文章目录
1、BGD(批量梯度下降)
定义:批量梯度下降法(Batch Gradient Descent,BGD)是最原始的形式,它是指在每一次
迭代时使用所有样本来进行梯度的更新。
优点:一次迭代是对所有样本进行计算,此时利用矩阵进行操作,实现了并行。由全数据集确定的方向能够更好地代表样本总体,从而更准确地朝向极值所在的方向。当目标函数为凸函数时,BGD一定能够得到全局最优。
缺点:当样本数目 m 很大时,每迭代一步都需要对所有样本计算,训练过程会很慢。
2、SGD(随机梯度下降)
定义:一次只对一个样本进行梯度下降,进行参数更新;
优点:由于不是在全部训练数据上的损失函数,而是在每轮迭代中,随机优化某一条训练数据上的损失函数,这样每一轮参数的更新速度大大加快;
缺点:准确度下降。由于即使在目标函数为强凸函数的情况下,SGD仍旧无法做到线性收敛;可能会收敛到局部最优,由于单个样本并不能代表全体样本的趋势;不易于并行实现;
2.1、SGD导致的Zigzag现象
由于是随机梯度下降,下图左上角的同心圆是单样本的loss等值线图,右下角也是和左上角一样都是单样本的等值线图,可以看到如果是SGD的话,梯度下降的方向会出现不稳定,不能线性收敛,即Zigzag现象。
3、MBGD(小批量梯度下降)
定义:小批量梯度下降(Mini-Batch Gradient Descent, MBGD)是对批量梯度下降以及随
机梯度下降的一个折中办法。其思想是:每次迭代 使用指定个(batch_size)样本来对
参数进行更新。
优点:通过矩阵运算,每次在一个batch上优化神经网络参数并不会比单个数据慢太多。每次使用一个batch可以大大减小收敛所需要的迭代次数,同时可以使收敛到的结果更加接近梯度下降的效果。
缺点:batch_size的不当选择可能会带来一些问题。
3.1 BGD、SGD、MBGD的比较
4、SGDM
全称是: Stochastic Gradient Descent with Momentum,动量随机梯度下降。
为什么提出?
因为使用SGD容易出现Zigzag现象,为了避免出现Zigzag现象,所以有了SGDM方法。
过程:
函数: f ( ω t ) f(\omega_t) f(ωt)
ω t + 1 = ω t − η t \omega_{t+1}=\omega_{t}-\eta_t ωt+1=ωt−ηt
η t = α ⋅ m t \eta_t=\alpha \cdot m_t ηt=α⋅mt,其中 α \alpha α是学习率
m t = β 1 ⋅ m t − 1 + ( 1 − β 1 ) ⋅ g t m_t=\beta_1\cdot m_{t-1}+(1-\beta_1)\cdot g_t mt=β1⋅mt−1+(1−β1)⋅gt
其中:
β 1 \beta_1 β1是动量参数, m t m_t mt是累计梯度, g t g_t gt是当前梯度
g t = ∇ f ( ω t ) g_t=\nabla f(\omega_t) gt=∇f(ωt)
先对 m t m_t mt的前三项进行展开,
每一项的 m t m_t mt都包含前面的所有的 g i g_i gi,使梯度下降的方向的趋于BGD的方向,从而也趋近于我们优化的方向。
下面是关于SGDM为什么是趋近于BGD优化方向的图解,希望能看得懂,
5、NAG
全称为:Nesterov Accelerated Gradient (SGD with Nesterov Acceleration)
这个方法用的比较少,我也没有看懂,就贴一下这个方法的过程吧;
6、AdaGrad(Adaptive Gradient)
定义:自适应梯度下降,每次梯度下降时会除以前面梯度计算总和的平方再开方;每个参数都有自己独有的学习率
优点:避免前期梯度下降的梯度爆炸和弥散;
缺点:后期有可能会停止训练
V t = ∑ τ = 1 t g τ 2 V_t=\sum_{\tau=1}^{t}g_\tau^2 Vt=∑τ=1tgτ2
η t = α ⋅ g t / V t \eta_t=\alpha\cdot g_t / \sqrt{V_t} ηt=α⋅gt/Vt
ω t + 1 = ω t − η t \omega_{t+1}=\omega_t-\eta_t ωt+1=ωt−ηt
7、AdaDelta/RMSProp
全称:Root Mean Square Propogation / Adaptive Delta
目的:解决AdaGrad过早收敛的问题;
8、Adam(Adaptive Moments Estimation)
结合了SGDM和AdaDelta
9、总结
参考:
1、哔站视频
今天的文章
深度学习训练之optimizer优化器(BGD、SGD、MBGD、SGDM、NAG、AdaGrad、AdaDelta、Adam)的最全系统详解分享到此就结束了,感谢您的阅读。
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。
如需转载请保留出处:http://bianchenghao.cn/80281.html