%function allmode=eemd(Y,Nstd,NE)
%
% This is an EMD/EEMD program
%
% INPUT:
% Y: Inputted data;1-d data only
% Nstd: ratio of the standard deviation of the added noise and that of Y;
% NE: Ensemble number for the EEMD
% OUTPUT:
% A matrix of N*(m+1) matrix, where N is the length of the input
% data Y, and m=fix(log2(N))-1. Column 1 is the original data, columns 2, 3, …
% m are the IMFs from high to low frequency, and comlumn (m+1) is the
% residual (over all trend).
%
% NOTE:
% It should be noted that when Nstd is set to zero and NE is set to 1, the
% program degenerates to a EMD program.(for EMD Nstd=0,NE=1)
% This code limited sift number=10 ,the stoppage criteria can’t change.
%
% References:
% Wu, Z., and N. E Huang (2008),
% Ensemble Empirical Mode Decomposition: a noise-assisted data analysis method.
% Advances in Adaptive Data Analysis. Vol.1, No.1. 1-41.
%
% code writer: Zhaohua Wu.
% footnote:S.C.Su 2009/03/04
%
% There are three loops in this code coupled together.
% 1.read data, find out standard deviation ,devide all data by std
% 2.evaluate TNM as total IMF number–eq1.
% TNM2=TNM+2,original data and residual included in TNM2
% assign 0 to TNM2 matrix
% 3.Do EEMD NE times————————————————————-loop EEMD start
% 4.add noise
% 5.give initial values before sift
% 6.start to find an IMF————————————————IMF loop start
% 7.sift 10 times to get IMF————————–sift loop start and end
% 8.after 10 times sift –we got IMF
% 9.subtract IMF from data ,and let the residual to find next IMF by loop
% 6.after having all the IMFs———————————————IMF loop end
% 9.after TNM IMFs ,the residual xend is over all trend
% 3.Sum up NE decomposition result————————————————-loop EEMD end
% 10.Devide EEMD summation by NE,std be multiply back to data
%
% Association: no
% this function ususally used for doing 1-D EEMD with fixed
% stoppage criteria independently.
%
% Concerned function: extrema.m
% above mentioned m file must be put together
function allmode=eemd(Y,Nstd,NE)
%part1.read data, find out standard deviation ,devide all data by std
xsize=length(Y);
dd=1:1:xsize;
Ystd=std(Y);
Y=Y/Ystd;
%part2.evaluate TNM as total IMF number,ssign 0 to TNM2 matrix
TNM=fix(log2(xsize))-1;
TNM2=TNM+2;
for kk=1:1:TNM2,
for ii=1:1:xsize,
allmode(ii,kk)=0.0;
end
end
%part3 Do EEMD —–EEMD loop start
for iii=1:1:NE, %EEMD loop -NE times EMD sum together
%part4 –Add noise to original data,we have X1
for i=1:xsize,
temp=randn(1,1)*Nstd;
X1(i)=Y(i)+temp;
end
%part4 –assign original data in the first column
for jj=1:1:xsize,
mode(jj,1) = Y(jj)
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。
如需转载请保留出处:https://bianchenghao.cn/10914.html