Compaction 的作用
因为 LevelDB 的增删改都是通过追加写来实现的,所以需要通过后台线程的 compaction 来:
- 清理过期(旧版本或者已删除)的数据。
- 维护数据的有序性。
Compaction 的触发
除了从外部调用 CompactRange,LevelDB 有几种情况会自动触发 compaction:
- 当 MemTable 的大小达到阈值时,进行 MemTable 切换,然后需要将 Immutable MemTable 刷到外存上 —— 一般称之为 Minor Compaction。
- 当 level-n 的 SSTable 超过限制,level-n 和 level-n+1 的 SSTable 会进行 compaction —— 一般称之为 Major Compaction。
- level-0 是通过 SSTable 的数量来判断是否需要 compaction。
- level-n(n > 0) 是通过 SSTable 的大小来判断是否需要 compaction。
Minor Compaction
Minor Compaction 比较简单,基本代码路径是:DBImpl::CompactMemTable => DBImpl::WriteLevel0Table => BuildTable。
Major Compaction
- 每次 compaction 结束,更新 manifest 之后,都会调用 VersionSet::Finalize 计算下一次要进行 major compaction 的 level。
- 每次 major compaction 开始时,调用 VersionSet::PickCompaction 计算需要进行 compaction 的 SSTable。
- 如果选中的 level-n 的 SSTable 和 level-n+1 的 SSTable 的 key 范围没有重叠,可以直接将 level-n 的 SSTable “移动”到 level-n+1,只需要修改 Manifest。
- 否则,调用 DBImpl::DoCompactionWork 对 level-n 和 level-n+1 的 SSTable 进行多路归并。
Compaction 的问题
Compaction 会对 LevelDB 的性能和稳定性带来一定影响:
- 消耗 CPU:对 SSTable 进行解析、解压、压缩。
- 消耗 I/O:大量的 SSTable 批量读写,十几倍甚至几十倍的写放大会消耗不少 I/O,同时缩短 SSD 的寿命(SSD 的写入次数是有限的)。
- 缓存失效:删除旧 SSTable,生成新 SSTable。新 SSTable 的首次请求无法命中缓存,可能引发系统性能抖动。
常见的做法是,控制 compaction 的速度(比如 RocksDB 的 Rate Limiter),让 compaction 的过程尽可能平缓,不要引起 CPU、I/O、缓存失效的毛刺。 这种做法带来一个问题:compaction 的速度应该控制在多少?Compaction 的速度如果太快,会影响系统性能;Compaction 的速度如果太慢,会阻塞写请求。 这个速度和具体的硬件能力、工作负载高度相关,往往只能设置一个“经验值”,比较难通用。同时这种做法只能在一定程度上减少系统毛刺、抖动,Compaction 带来的写放大依然是那么大。
写放大简单分析
- +1 – WAL 的写入。
- +1 – Immutable Memtable 写入到 level-0 文件。
- +2 – level-0 和 level-1 的 compaction(level-0 的每个 SSTable 的 key 范围是重叠的。一般控制 level-0 和 level-1 的数据大小是一样的,每次拿全量 level-0 的数据和全量 level-1 的数据进行 compaction)。
- +11 – level-n 和 level-n+1 合并的写入(n >= 1,默认情况下,level-n+1 的数据大小是 level-n 的 10 倍)。
所以,总的写放大是 4 + 11(n-1) = 11n – 7 倍。
假设有 5 个 level,写放大最大是 48 倍——也就是说,外部写入 1GB 的数据,内部观察到的 I/O 写流量会有 48GB。
关于 LSM-Tree 的写放大有不少论文进行了详细的介绍、讨论和提出优化方案,比如:
- Dostoevsky: Better Space-Time Trade-Offs for LSM-Tree Based Key-Value Stores via Adaptive Removal of Superfluous Merging – 这篇论文将各种 compaction 方式和影响介绍得非常清楚。
- WiscKey: Separating Keys from Values in SSD-conscious Storage – 通过将键值分离,大大减少了写放大。
- …
小结
- 根据实际经验,在大部分场景下, compaction 带来的问题不是特别明显。
- 一些会有突发流量的情况,很容易造成 compaction 的速度跟不上实际写入的速度,导致写失败。
- Write intensive 的场景,写放大缩短了 SSD 的寿命也是个问题。
今天的文章LevelDB 完全解析(11):Compaction分享到此就结束了,感谢您的阅读。
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。
如需转载请保留出处:https://bianchenghao.cn/17810.html