Node.js使用数据库LevelDB:超高性能kv存储引擎

Node.js使用数据库LevelDB:超高性能kv存储引擎LevelDB是Google传奇工程师Jeff Dean和Sanjay Ghemawat开源的一款超高性能Key-Value存储引擎,以其惊人的读性能和更加惊人的写性能在轻量级NoSql数据库中鹤立鸡

Node.js被设计用来做快速高效的网络I/O。它的事件驱动流使其成为一种智能代理的理想选择,通常作为后端系统和前端之间的粘合剂。Node的设计初衷就是为了实现这一目的,但与此同时,它已成功用于构建传统的Web应用程序:一个HTTP服务器,提供为HTML页面或JSON消息响应,并使用数据库存储数据。

尽管其他平台和语言有比较成熟的Web框架并更倾向于使用开源关系型数据库,如MySQL或PostgreSQL,大多数Node Web框架(如Express、Hapi等)并不强制使用任何特定的数据库,甚至根本不强制使用任何类型的数据库。昨天在《浅谈前端异常监控平台实现方案》一文中就提到LevelDB,今天跟大家介绍这个超高性能的Key-Value数据库LevelDB,同类型的比较流行的有MongoDB,本文暂不介绍MongoDB。

认识LevelDB

LevelDB是Google传奇工程师Jeff Dean和Sanjay Ghemawat开源的一款超高性能Key-Value存储引擎,以其惊人的读性能和更加惊人的写性能在轻量级NoSql数据库中鹤立鸡群,此开源项目目前是支持处理十亿级别规模Key-Value型数据持久性存储的C++ 程序库。在优秀的表现下对于内存的占用也非常小,大量数据都直接存储在磁盘上,可以理解为以空间换取时间。

设计思路

对于普通机械磁盘顺序写的性能要比随机写高很多,而LevelDB的设计思想正是利用了磁盘的这个特性。 LevelDB的数据是存储在磁盘上的,采用LSM-Tree的结构实现。LSM-Tree将磁盘的随机写转化为顺序写,从而大大提高了写速度。为了做到这一点LSM-Tree的思路是将索引树结构拆成一大一小两颗树,较小的一个常驻内存,较大的一个持久化到磁盘,共同维护一个有序的key空间。写入操作会首先操作内存中的树,随着内存中树的不断变大,会触发与磁盘中树的归并操作,而归并操作本身仅有顺序写。如下图所示:

image.png

上图为 LevelDB 整体架构,静态结构主要由六个部分组成:

  • MemTable(wTable):内存数据结构,具体实现是 SkipList。 接受用户的读写请求,新的数据修改会首先在这里写入。
  • Immutable MemTable(rTable):当 MemTable 的大小达到设定的阈值时,会变成 Immutable MemTable,只接受读操作,不再接受写操作,后续由后台线程 Flush 到磁盘上。
  • SST Files:Sorted String Table Files,磁盘数据存储文件。分为 Level0 到 LevelN 多层,每一层包含多个 SST 文件,文件内数据有序。Level0 直接由 Immutable Memtable Flush 得到,其它每一层的数据由上一层进行 Compaction 得到。
  • Manifest Files:Manifest 文件中记录 SST 文件在不同 Level 的分布,单个 SST 文件的最大、最小 key,以及其他一些 LevelDB 需要的元信息。由于 LevelDB 支持 snapshot,需要维护多版本,因此可能同时存在多个 Manifest 文件。
  • Current File:由于 Manifest 文件可能存在多个,Current 记录的是当前的 Manifest 文件名。
  • Log Files (WAL):用于防止 MemTable 丢数据的日志文件。

粗箭头表示写入数据的流动方向:

  1. 先写入 MemTable。
  2. MemTable 的大小达到设定阈值的时候,转换成 Immutable MemTable。
  3. Immutable Table 由后台线程异步 Flush 到磁盘上,成为 Level0 上的一个 sst 文件。
  4. 在某些条件下,会触发后台线程对 Level0 ~ LevelN 的文件进行 Compaction。
读操作的流动方向和写操作类似:
  1. 读 MemTable,如果存在,返回。
  2. 读 Immutable MemTable,如果存在,返回。
  3. 按顺序读 Level0 ~ Leveln,如果存在,返回。
  4. 返回不存在。

上面就是简单的介绍 LevelDB 的设计原理,架构和读写操作的数据流向,因为独特的设计原理,LevelDB很适合查询较少,写操作很多的场景。如果需要进一步了解其设计原理,就需要去学习跳跃表的设计算法,这里就不展开了。

跳跃表是平衡树的一种替代的数据结构,但是和红黑树不相同的是,跳跃表对于树的平衡的实现是基于一种随机化的算法的,这样也就是说跳跃表的插入和删除的工作是比较简单的。

LevelDB特征:

  • key和value都是任意长度的字节数组;
  • 存储按键排序的数据;
  • 提供基本的put(key, value)get(key)delete(key)接口;
  • 支持批量操作以原子操作进行;
  • 可以创建数据全景的snapshot(快照),并允许在快照中查找数据;
  • 可以通过前向(或后向)迭代器遍历数据(迭代器会隐含的创建一个snapshot);
  • 自动使用Snappy压缩数据;
  • 可移植性;

基于以上特性,很多区块链项目都是采用LevelDB来作为数据存储。下面就开始介绍如何在项目中使用LevelDB,本文涉及的代码在项目Pretender-Service

安装LevelDB

项目是基于Node.js,基础环境就需要自己配置一下。执行一下命令:

npm install level --save

接下来还需要安装level-sublevel,为了方便更好的使用LevelDB,不用自己设计分键空间。

npm install level-sublevel --save

还需要为数据生成唯一ID的模块,这里我们安装 cuid

npm install cuid --save

安装完成后,将在应用程序中使用它,创建一个levelDb的类 ./src/db/levelDb.js

添加引用的依赖库

const level = require("level");
const sublevel = require("level-sublevel");

在构造函数中声明两个变量,代码如下:

class LevelDb {
    constructor(dbPath, options = {}) {
        this.options = options;
        this.db = sublevel(level(dbPath, { valueEncoding: "json" }));
    }
}
module.exports = LevelDb;

在这里,创建了一个导出LevelDB数据库的单例模块。首先需要level模块,并使用它来实例化数据库,并为其提供路径 dbPath 。此路径为 LevelDB 存储数据文件的目录路径。此目录专门用于 LevelDB ,可能在开始时不存在。在这里定义的路径为外部声明的时候传入进来。valueEncoding 定义了使用的值的格式为 json,支持一下格式:hexutf8base64binaryasciiutf16le

添加LevelDB操作方法

现在来为上面定义的类增加方法,常用的方法有 put、get、delete、batch、find。本文只是基本的操作,实际项目需要对数据进行合理的设计。

在构造函数中创建了LevelDB数据库对象this.db,可以调用其方法。

put

新增或者更新数据。

    put(key, value, callback) {
        if (key && value) {
            this.db.put(key, value, (error) => {
                callback(error);
            });
        } else {
            callback("no key or value");
        }
    }

get

获取指定key的数据。

    get(key, callback) {
        if (key) {
            this.db.get(key, (error, value) => {
                callback(error, value);
            });
        } else {
            callback("no key", key);
        }
    }

delete

删除指定key的数据

    delete(key, callback) {
        if (key) {
            this.db.del(key, (error) => {
                callback(error);
            });
        } else {
            callback("no key");
        }
    }

batch

LeveLDB的一个强大功能是,它允许对要自动执行的批处理中的操作进行分组。

    batch(arr, callback) {
        if (Array.isArray(arr)) {
            var batchList = [];
            arr.forEach(item);
            {
                var listMember = {};
                if (item.hasOwnProperty("type")) {
                    listMember.type = item.type;
                }
                if (item.hasOwnProperty("key")) {
                    listMember.key = item.key;
                }
                if (item.hasOwnProperty("value")) {
                    listMember.value = item.value;
                }
                if (
                    listMember.hasOwnProperty("type") &&
                    listMember.hasOwnProperty("key") &&
                    listMember.hasOwnProperty("value")
                ) {
                    batchList.push(listMember);
                }
            }
            if (batchList && batchList.length > 0) {
                this.db.batch(batchList, (error) => {
                    callback(error, batchList);
                });
            } else {
                callback("array Membre format error");
            }
        } else {
            callback("not array");
        }
    }

到这里已经完成一个 LevelDB 基础操作类,下面就开始将其应用于项目中。

使用LevelDB

接下来创建一个examples的文件夹,增加文件index.jskey-value数据库存储和关系型数据库有所不一样,关系型数据库每条记录一般都有一个唯一的自增长id,而key-value数据库需要自己维护一个类似id的唯一key值,这个key值的设计也影响数据查询是否遍历。这里我们只是做一个简单的实例,完整代码如下:

"use strict";
require("../src/utils/logger.js")(2);
const { dbConfig } = require("../config");

const LevelDB = require("../src/db/levelDb");
const path = require("path");
const cuid = require("cuid");
const dbHelper = new LevelDB(
    path.resolve(__dirname, dbConfig.path, dbConfig.folder)
);

// 增加用户信息
const administrators = [
    {
        name: "QuintionTang",
        email: "QuintionTang@gmail.com",
        password: "123456",
        id: "ckoyhjqbj0000mzkd1o63e31p",
    },
    {
        name: "JimGreen",
        email: "JimGreen@gmail.com",
        password: "123456",
        id: "ckoyhjqbk0001mzkdhuq9abo4",
    },
];
const keyPrefix = "administrator";
console.info("====>开始插入数据");
const administratorsKeys = [];
for (const item of administrators) {
    const uid = item.id;
    const keyName = `${keyPrefix}_${uid}`;
    item.id = uid;
    dbHelper.put(keyName, item, (error) => {
        if (error !== null) {
            administratorsKeys.push(keyName);
        }
    });
}
console.info("====>开始查找数据");
// 开始查找uid为 ckoyhjqbj0000mzkd1o63e31p 的用户信息
const findUid = "ckoyhjqbj0000mzkd1o63e31p";
const findKeyName = `${keyPrefix}_${findUid}`;
dbHelper.find(
    {
        prefix: findKeyName,
    },
    (error, result) => {
        console.info(result);
    }
);

接下来执行实例代码:

cd examples
node index.js

执行结果如下:

image.png

此时查看根目录下 database 就会生成数据库文件。

总结

本文简单介绍了LevelDB的设计原理,在项目中完成LevelDB类的定义,并实现一个简单的数据插入和查询。后续会在项目Pretender-Service完成更加复杂的业务逻辑,实现基本的CURD,敬请关注项目动态。

今天的文章Node.js使用数据库LevelDB:超高性能kv存储引擎分享到此就结束了,感谢您的阅读。

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。
如需转载请保留出处:https://bianchenghao.cn/20305.html

(0)
编程小号编程小号

相关推荐

发表回复

您的电子邮箱地址不会被公开。 必填项已用*标注