一、二进制数转换成十进制数
由二进制数转换成十进制数的基本做法是,把二进制数首先写成加权系数展开式,然后按十进制加法规则求和。这种做法称为”按权相加”法。
二、十进制数转换为二进制数
十进制数转换为二进制数时,由于整数和小数的转换方法不同,所以先将十进制数的整数部分和小数部分分别转换后,再加以合并。
1. 十进制整数转换为二进制整数
十进制整数转换为二进制整数采用”除2取余,逆序排列”法。具体做法是:用2去除十进制整数,可以得到一个商和余数;再用2去除商,又会得到一个商和余数,如此进行,直到商为零时为止,然后把先得到的余数作为二进制数的低位有效位,后得到的余数作为二进制数的高位有效位,依次排列起来。
2.十进制小数转换为二进制小数
十进制小数转换成二进制小数采用”乘2取整,顺序排列”法。具体做法是:用2乘十进制小数,可以得到积,将积的整数部分取出,再用2乘余下的小数 部分,又得到一个积,再将积的整数部分取出,如此进行,直到积中的小数部分为零,或者达到所要求的精度为止。
然后把取出的整数部分按顺序排列起来,先取的整数作为二进制小数的高位有效位,后取的整数作为低位有效位。
例1109 (173.8125)10=( )2
解: 由[例1107]得(173)10=(10101101)2
由[例1108]得(0.8125)10=(0.1101)2
把整数部分和小数部分合并得: (173.8125)10=(10101101.1101)2
十进制小数→→→→→二进制小数 方法:“乘2取整”
对十进制小数乘2得到的整数部分和小数部分,整数部分既是相应的二进制数码,再用2乘小数部分(之前乘后得到新的小数部分),又得到整数和小数部分。
如此不断重复,直到小数部分为0或达到精度要求为止.第一次所得到为最高位,最后一次得到为最低位
如:0.25的二进制
0.25*2=0.5取整是0
0.5*2=1.0取整是1
即0.25的二进制为 0.01 (第一次所得到为最高位,最后一次得到为最低位)
0.8125的二进制
0.8125*2=1.625取整是1
0.625*2=1.25取整是1
0.25*2=0.5取整是0
0.5*2=1.0取整是1
即0.8125的二进制是0.1101(第一次所得到为最高位,最后一次得到为最低位)
十进制小数→→→→→八进制小数 方法:“乘8取整”
0.71875)10 =(0.56)8
0.71875*8=5.75 取整5
0.75*8=6.0 取整6
即0.56
十进制小数→→→→→十六进制小数方法:“乘16取整”例如:
(0.142578125)10=(0.248)16
0.142578125*16=2.28125 取整2
0.28125*16=4.5 取整4
0.5*16=8.0 取整8
即0.248
非十进制数之间的转换
(1)二进制数与八进制数之间的转换
转换方法是:以小数点为界,分别向左右每三位二进制数合成一位八进制数,或每一位八进制数展成三位二进制数,不足三位者补0。例如:
(423。45)8=(100 010 011.100 101)2
(1001001.1101)2=(001 001 001.110 100)2=(111.64)8
(2)二进制与十六进制转换
转换方法:以小数点为界,分别向左右每四位二进制合成一位十六进制数,或每一位十六进制数展成四位二进制数,不足四位者补0。例如:
(ABCD.EF)16=(1010 1011 1100 1101.1110 1111)2
(101101101001011.01101)2=(0101 1011 0100 1011.0110 1000)2=(5B4B.68)16
可以把二进制作为中间的过渡使用。
以上这篇浅谈十进制小数和二进制小数之间的转换就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持脚本之家。
今天的文章c语言小数转化为十进制小数,浅谈十进制小数和二进制小数之间的转换分享到此就结束了,感谢您的阅读,如果确实帮到您,您可以动动手指转发给其他人。
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。
如需转载请保留出处:https://bianchenghao.cn/24651.html