一、矩阵等价、相似和合同之间的区别:
1、等价,相似和合同三者都是等价关系。
2、矩阵相似或合同必等价,反之不一定成立。
3、矩阵等价,只需满足两矩阵之间可以通过一系列可逆变换,也即若干可逆矩阵相乘得到。
4、矩阵相似,则存在可逆矩阵P使得,AP=PB。
5、矩阵合同,则存在可逆矩阵P使得,P^TAP=B。
6、当上述矩阵P是正交矩阵时,即PT=P(-1),则有A,B之间既满足相似,又满足合同关系。
二、矩阵等价、相似、合同之间联系:
1、矩阵等秩是相似、合同、等价的必要条件,相似、合同、等价是等秩的充分条件。
2、矩阵等价是相似、合同的必要条件,相似、合同是等价的充分条件。
3、 矩阵相似、合同之间没有充要关系,存在相似但不合同的矩阵,也存在合同但不相似的矩阵。
4、总结起来就是:相似=>等价,合同=>等价,等价=>等秩。
今天的文章一图说明矩阵等价,相似,合同分享到此就结束了,感谢您的阅读,如果确实帮到您,您可以动动手指转发给其他人。
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。
如需转载请保留出处:https://bianchenghao.cn/27197.html