原理图
红外通信
红外通信原理
红外通信的原理就是利用38k载波对原始信号进行调制,使其变成0调制后的信号,我们单片机就只需要对这个信号进行分析处理就可以得到数据。
NEC协议红外遥控器
日常生活中使用的红外遥控器有很多通信协议,例如ITT,NEC,Sharp,Sony SIRC等等,我们这里使用的是NEC协议
NEC协议原理
实物即遥控器上对应的数据码
操作
所以编程操作只需要用一个在一个低电平触发中断里面,对红外线通信进行识别,最后拿出数据码即可。
代码
存储的数据放到了IRcord[4]里面
/*Infrared.h*/
#ifndef __Infrared_H__
#define __Infrared_H__
void init();
void IRcordpro();
#endif
/*Infrared.c*/
#include <reg52.h>
//数据类型定义
#define uchar unsigned char
#define uint unsigned int
//引脚
sbit IR = P3^2; //红外接收引脚
uchar IRtime; //检测红外高电平持续时间(脉宽)
uchar IRcord[4]; //此数组用于储存分离出来的4个字节的数据(用户码2个字节+键值码2个字节)
uchar IRdata[33]; //此数组用于储存红外的33位数据(第一位为引导码用户码16+键值码16)
bit IRpro_ok, IRok;
void init() //初始化定时器0 和外部中断0
{
TMOD = 0x22; //定时器0和定时器1工作方式2,8位自动重装
TH0 = 0x00; //高8位装入0那么定时器溢出一次的时间是256个机器周期
TL0 = 0x00;
EA = 1; //总中断
ET0 = 1; //定时器0中断
TR0 = 1; //启动定时器0
IT0 = 1; //设置外部中断0为跳沿触发方式,来一个下降沿触发一次
EX0 = 1; //启动外部中断0
}
void time0() interrupt 1 //定义定时器0
{
IRtime++; //检测脉宽,1次为278us
}
void int0() interrupt 0 //定义外部中断0
{
static uchar i; // 声明静态变量(在跳出函数后在回来执行的时候不会丢失数值)i用于把33次高电平的持续时间存入IRdata
static bit startflag; //开始储存脉宽标志位
if(startflag) //开始接收脉宽检测
{
if( (IRtime < 53) && (IRtime >= 32) ) /*判断是否是引导码,底电平9000us+高4500us 这个自己可以算我以11.0592来算了NEC协议的引导码低8000-10000+高4000-5000 如果已经接收了引导码那么i不会被置0就会开始依次存入脉宽*/
i = 0; //如果是引导码那么执行i=0把他存到IRdata的第一个位
IRdata[i] = IRtime; //以T0的溢出次数来计算脉宽,把这个时间存到数组里面到后面判断
IRtime = 0; //计数清零,下一个下降沿的时候在存入脉宽
i++; //计数脉宽存入的次数
if(i == 33) //如果存入34次 数组的下标是从0开始i等于33表示执行了34次
{
IRok = 1; //那么表示脉宽检测完毕
i = 0; //把脉宽计数清零准备下次存入
}
}
else
{
IRtime = 0; //引导码开始进入把脉宽计数清零开始计数
startflag = 1; //开始处理标志位置1
}
}
void IRcordpro() //提取它的33次脉宽进行数据解码
{
uchar i, j, k, cord, value; /*i用于处理4个字节,j用于处理一个字节中每一位,k用于33次脉宽中的哪一位 cord用于取出脉宽的时间判断是否符合1的脉宽时间*/
k = 1; //从第一位脉宽开始取,丢弃引导码脉宽
for(i = 0; i < 4; i++)
{
for(j = 0; j < 8; j++)
{
cord = IRdata[k]; //把脉宽存入cord
if(cord > 5) //如果脉宽大于我11.0592的t0溢出率为约278us*5=1390那么判断为1
value = value | 0x80; /*接收的时候是先接收最低位, 把最低位先放到value的最高位在和0x08按位或一下 这样不会改变valua的其他位的数值只会让他最高位为1*/
if(j < 7)
{
value = value >> 1; //value位左移依次接收8位数据。
}
k++; //每执行一次脉宽位加1
}
IRcord[i] = value; //每处理完一个字节把它放入IRcord数组中。
value = 0; //清零value方便下次在存入数据
}
IRpro_ok = 1; //接收完4个字节后IRpro ok置1表示红外解码完成
}
DS18B20
时序问题
DS18B20采用的是1-wire,所有数据都在一条线上完成,数据的传输总是从最低有效位开始
初始化时序
主机和DS18B20做任何通讯前都需要对其初始化。初始化期间,总线控制器拉低总线并保持480us以上挂在总线上的器件将被复位,然后释放总线,等到15-60us,此时18B20将返回一个60-240us之间的低电平存在信号。
写时序
总线控制器要产生一个写时序,必须将总线拉低最少1us,产生写0时序时总线必须保持低电平60~120us之间,然后释放总线,产生写1时序时在总线产生写时序后的15us内允许把总线拉高。
注意:2次写周期之间至少间隔1us
写时序
总线控制器要产生一个读时序,必须将总线拉低至少1us,然后释放总线,在读信号开始后15us内总线控制器采样总线数据,读一位数据至少保持在60us以上。
注意:2次读周期之间至少间隔1us
暂存器
为了把DS18B20读到的数据存下来方便读取,有暂存器出现
温度寄存器
配置寄存器
操作顺序