哈希算法
概述 :
哈希算法(Hash)又称摘要算法(Digest),它的作用是:对任意一组输入数据进行计算,得到一个固定长度的输出摘要。目的为了验证原始数据是否被纂改。
哈希算法的特点:
- 相同的输入一定能得到相同的输出;
- 不同的输入大概率得到不同的输出。
例:字符串里的hashCode()就是一个哈希算法,它可以输入任意长度的字符串,输出是固定的4个字节int整数。
"hello".hashCode(); // 0x5e918d2
"hello, java".hashCode(); // 0x7a9d88e8
"hello, bob".hashCode(); // 0xa0dbae2f
两个相同的字符永远会计算出相同的hashCode(),否则HashMap就无法用hashCode来正常定位了。因此当我们在重写equals()方法时必须要重写HashCode()方法。
哈希碰撞
哈希碰撞就是指两个不同的输入得到了一个相同的输出:
例:“通话”和“重地”
"通话".hashCode(); // 0x11ff03
"重地".hashCode(); // 0x11ff03
哈希碰撞是不能避免的,它是一定会出现的。因为输出的长度是固定的,String的hashCode()输出是4字节整数,最多只有4294967296种输出,但输入的数据长度不固定,有无数种输入。所以哈希算法是把一个无限输入的集合映射到一个有限的输出集合,必定会发生碰撞。
既然碰撞不可避免,那么我们就要降低碰撞发生的概率,因为碰撞概率的高低关系到哈希算法的安全性。一个安全的哈希算法必须满足:
- 碰撞概率低
- 不能猜测输出
不能猜测输出是指:输入任意一个bit的变化都能造成输出的完全不同,这样就很难从输出反推输入,安全的哈希算法从输出看不出任何规律(除非是用暴力穷举)。
常用哈希算法
根据碰撞概率,哈希算法的长度越长,就越不容易发生碰撞,也就越安全。
算法 | 输出长度(位) | 输出字节(字节) |
MD5 | 128 bits | 16 bytes |
SHA-1 | 160 bits | 20 bytes |
RipeMD-160 | 160 bits | 20 bytes |
SHA-256 | 256 bits | 32 bytes |
SHA-512 | 512 bits | 64 bytes |
Java标准库提供了常用的哈希算法,我们以MD5算法为例,看看是怎么计算哈希的:
import java.security.MessageDigest;
public class main {
public static void main(String[] args) {
// 创建一个MessageDigest实例:
MessageDigest md = MessageDigest.getInstance("MD5");
// 调用update输入数据:
md.update("Hello".getBytes());
md.update("World".getBytes());
// 16 bytes: 68e109f0f40ca72a15e05cc22786f8e6
byte[] results = md.digest();
StringBuilder sb = new StringBuilder();
for(byte bite : results) {
sb.append(String.format("%02x", bite));
}
System.out.println(sb.toString());
}
}
使用MessaDigest时,我们首先根据哈希算法获取一个MessageDigest实例,然后调用updata(byte[ ])输入数据。当输入结束后,调用digest()方法获得byte[ ] 数组表示的摘要,最后把它转为16进制的字符串。
哈希算法的用途
校验下载文件、存储用户密码。
对称式加密算法:
概述:
对称式加密就是传统的用一个密码进行加密和解密。例如,我们常用的WinZIP和WinRAR对压缩包的加密和解密,就是使用对称加密算法。
从程序角度看,所谓的加密,就是这样一个函数,它接收密码和明文,然后输出密文:
secret = encrpt(key,message);
而解密恰好相反,它接受密码和密文,然后输出明文:
plain = decrpty(key,secret);
常用的加密算法有:
算法 | 密钥长度 | 工作模式 | 填充模式 |
DES | 56/64 | EBC/CBC/PCBC/CTR/… | NoPadding/PKCS5Padding/… |
AES | 128/192/256 | EBC/CBC/PCBC/CTR/… | NoPadding/PKCS5Padding/PKCS7Padding/.. |
IDEA | 128 | ECB | PKCS5Padding/PKCS7Padding/.. |
密钥长度直接决定加密强度,而工作模式和填充模式可以看成是对称加密算法和格式选择。
(注意:DES算法由于密钥过短,可以在短时间内被暴力激活成功教程,所以现在已经不安全了。)
使用AES加密
AES加密是目前应用最广泛的加密算法,比较常见的工作模式是ECB和CBC和ECB模式
例:用ECB模式加密并解密
import java.security.*;
import java.util.Base64;
import javax.crypto.*;
import javax.crypto.spec.*;
public class Main {
public static void main(String[] args) throws Exception {
// 原文:
String message = "Hello, world!";
System.out.println("Message(原始信息): " + message);
// 128位密钥 = 16 bytes Key:
byte[] key = "1234567890abcdef".getBytes();
// 加密:
byte[] data = message.getBytes();
byte[] encrypted = encrypt(key, data);
System.out.println("Encrypted(加密内容): " +
Base64.getEncoder().encodeToString(encrypted));
// 解密:
byte[] decrypted = decrypt(key, encrypted);
System.out.println("Decrypted(解密内容): " + new String(decrypted));
}
// 加密:
public static byte[] encrypt(byte[] key, byte[] input) throws GeneralSecurityException {
// 创建密码对象,需要传入算法/工作模式/填充模式
Cipher cipher = Cipher.getInstance("AES/ECB/PKCS5Padding");
// 根据key的字节内容,"恢复"秘钥对象
SecretKey keySpec = new SecretKeySpec(key, "AES");
// 初始化秘钥:设置加密模式ENCRYPT_MODE
cipher.init(Cipher.ENCRYPT_MODE, keySpec);
// 根据原始内容(字节),进行加密
return cipher.doFinal(input);
}
// 解密:
public static byte[] decrypt(byte[] key, byte[] input) throws GeneralSecurityException {
// 创建密码对象,需要传入算法/工作模式/填充模式
Cipher cipher = Cipher.getInstance("AES/ECB/PKCS5Padding");
// 根据key的字节内容,"恢复"秘钥对象
SecretKey keySpec = new SecretKeySpec(key, "AES");
// 初始化秘钥:设置解密模式DECRYPT_MODE
cipher.init(Cipher.DECRYPT_MODE, keySpec);
// 根据原始内容(字节),进行解密
return cipher.doFinal(input);
}
}
使用时按以下步骤编写代码:
1.根据算法名称/工作模式/填充模式获取Cipher实例;
2.根据算法名称初始化一个SecretKey实例,密钥必须是指定长度;
3.使用SerectKey初始化Cipher实例,并设置加密或解密模式;
4.传入明文或密文,获得密文或明文。
CBC模式
ECB模式是最简单的AES加密模式,它只需要一个固定长度的密钥,固定的明文会生成固定的密文,这种一对一的加密方式会导致安全性降低,更好的方式是通过CBC模式,它需要一个随机数作为IV参数,这样对于同一份明文,每次生成的密文都不同。
使用Java代码实现CBC的加密和解密:
package com.apesource.demo04;
import java.security.*;
import java.util.Base64;
import javax.crypto.*;
import javax.crypto.spec.*;
public class Main {
public static void main(String[] args) throws Exception {
// 原文:
String message = "Hello, world!";
System.out.println("Message(原始信息): " + message);
// 256位密钥 = 32 bytes Key:
byte[] key = "1234567890abcdef1234567890abcdef".getBytes();
// 加密:
byte[] data = message.getBytes();
byte[] encrypted = encrypt(key, data);
System.out.println("Encrypted(加密内容): " +
Base64.getEncoder().encodeToString(encrypted));
// 解密:
byte[] decrypted = decrypt(key, encrypted);
System.out.println("Decrypted(解密内容): " + new String(decrypted));
}
// 加密:
public static byte[] encrypt(byte[] key, byte[] input) throws GeneralSecurityException {
// 设置算法/工作模式CBC/填充
Cipher cipher = Cipher.getInstance("AES/CBC/PKCS5Padding");
// 恢复秘钥对象
SecretKeySpec keySpec = new SecretKeySpec(key, "AES");
// CBC模式需要生成一个16 bytes的initialization vector:
SecureRandom sr = SecureRandom.getInstanceStrong();
byte[] iv = sr.generateSeed(16); // 生成16个字节的随机数
System.out.println(Arrays.toString(iv));
IvParameterSpec ivps = new IvParameterSpec(iv); // 随机数封装成IvParameterSpec参数对象
// 初始化秘钥:操作模式、秘钥、IV参数
cipher.init(Cipher.ENCRYPT_MODE, keySpec, ivps);
// 加密
byte[] data = cipher.doFinal(input);
// IV不需要保密,把IV和密文一起返回:
return join(iv, data);
}
// 解密:
public static byte[] decrypt(byte[] key, byte[] input) throws GeneralSecurityException {
// 把input分割成IV和密文:
byte[] iv = new byte[16];
byte[] data = new byte[input.length - 16];
System.arraycopy(input, 0, iv, 0, 16); // IV
System.arraycopy(input, 16, data, 0, data.length); //密文
System.out.println(Arrays.toString(iv));
// 解密:
Cipher cipher = Cipher.getInstance("AES/CBC/PKCS5Padding"); // 密码对象
SecretKeySpec keySpec = new SecretKeySpec(key, "AES"); // 恢复秘钥
IvParameterSpec ivps = new IvParameterSpec(iv); // 恢复IV
// 初始化秘钥:操作模式、秘钥、IV参数
cipher.init(Cipher.DECRYPT_MODE, keySpec, ivps);
// 解密操作
return cipher.doFinal(data);
}
// 合并数组
public static byte[] join(byte[] bs1, byte[] bs2) {
byte[] r = new byte[bs1.length + bs2.length];
System.arraycopy(bs1, 0, r, 0, bs1.length);
System.arraycopy(bs2, 0, r, bs1.length, bs2.length);
return r;
}
}
在CBC模式下,需要一个随机生成的16字节IV参数,必须使用SecureRandom生成。因为多了一个IvParameterSpec实例,因此,初始化方法需要调用Cipher的一个重载方法并传入IvParameterSpec。观察输出,可以发现每次生成的IV不同,密文也不同。
(注意:使用对称加密算法需要指定算法名称、工作模式和填充模式。)
密钥交换算法:
对称加密解决了数据加密问题,可以使得我们在不安全的信道传递加密文件,因为黑客拿到加密文件也没有用。但是怎么在不安全的信道传递密钥。这就需要我们了解一下密钥交换算法(DH算法)。DH算法解决了双方不直接传递密钥的情况下完成密钥交换,这个神奇的交换原理完全由数学理论支持。
密钥交换算法的交换密钥的步骤:(以傻妞和黄眉大王为例)
1.傻妞首选选择一个素数p= 509,底数g = 5(任选),随机数a = 123,然后计算A = g^a mod p,结果是215,然后,傻妞发送p = 509,g=5,A=215给黄眉大王;
2.黄眉大王收到后,也选择一个随机数b=456,然后计算B = g^b mod p,结果是181,黄眉大王再同时计算K = A^b mod p,结果是121;
3.黄眉大王把计算的B=181发给傻妞,傻妞计算K = B^a mod p的余数,计算结果与Bob算出的结果一样,都是121。
所以最终双方协商出的密钥s是121。注意到这个密钥s并没有在网络上传输。而通过网络传输的p,g,A和B是无法推算出s的,因为实际算法选择的素数是非常大的。所以,更确切地说,DH算法是一个密钥协商算法,双方最终协商出一个共同的密钥,而这个密钥不会通过网络传输。
使用Java实现DH算法:
import java.math.BigInteger;
import java.security.GeneralSecurityException;
import java.security.KeyFactory;
import java.security.KeyPair;
import java.security.KeyPairGenerator;
import java.security.PrivateKey;
import java.security.PublicKey;
import java.security.spec.X509EncodedKeySpec;
import javax.crypto.KeyAgreement;
public class Main04 {
public static void main(String[] args) {
// Bob和Alice:
Person bob = new Person("Bob");
Person alice = new Person("Alice");
// 各自生成KeyPair: 公钥+私钥
bob.generateKeyPair();
alice.generateKeyPair();
// 双方交换各自的PublicKey(公钥):
// Bob根据Alice的PublicKey生成自己的本地密钥(共享公钥):
bob.generateSecretKey(alice.publicKey.getEncoded());
// Alice根据Bob的PublicKey生成自己的本地密钥(共享公钥):
alice.generateSecretKey(bob.publicKey.getEncoded());
// 检查双方的本地密钥是否相同:
bob.printKeys();
alice.printKeys();
// 双方的SecretKey相同,后续通信将使用SecretKey作为密钥进行AES加解密...
}
}
// 用户类
class Person {
public final String name; // 姓名
// 密钥
public PublicKey publicKey; // 公钥
private PrivateKey privateKey; // 私钥
private byte[] secretKey; // 本地秘钥(共享密钥)
// 构造方法
public Person(String name) {
this.name = name;
}
// 生成本地KeyPair:(公钥+私钥)
public void generateKeyPair() {
try {
// 创建DH算法的“秘钥对”生成器
KeyPairGenerator kpGen = KeyPairGenerator.getInstance("DH");
kpGen.initialize(512);
// 生成一个"密钥对"
KeyPair kp = kpGen.generateKeyPair();
this.privateKey = kp.getPrivate(); // 私钥
this.publicKey = kp.getPublic(); // 公钥
} catch (GeneralSecurityException e) {
throw new RuntimeException(e);
}
}
// 按照 "对方的公钥" => 生成"共享密钥"
public void generateSecretKey(byte[] receivedPubKeyBytes) {
try {
// 从byte[]恢复PublicKey:
X509EncodedKeySpec keySpec = new X509EncodedKeySpec(receivedPubKeyBytes);
// 根据DH算法获取KeyFactory
KeyFactory kf = KeyFactory.getInstance("DH");
// 通过KeyFactory创建公钥
PublicKey receivedPublicKey = kf.generatePublic(keySpec);
// 生成本地密钥(共享公钥)
KeyAgreement keyAgreement = KeyAgreement.getInstance("DH");
keyAgreement.init(this.privateKey); // 初始化"自己的PrivateKey"
keyAgreement.doPhase(receivedPublicKey, true); // 根据"对方的PublicKey"
// 生成SecretKey本地密钥(共享公钥)
this.secretKey = keyAgreement.generateSecret();
} catch (GeneralSecurityException e) {
throw new RuntimeException(e);
}
}
public void printKeys() {
System.out.printf("Name: %s\n", this.name);
System.out.printf("Private key: %x\n", new BigInteger(1, this.privateKey.getEncoded()));
System.out.printf("Public key: %x\n", new BigInteger(1, this.publicKey.getEncoded()));
System.out.printf("Secret key: %x\n", new BigInteger(1, this.secretKey));
}
}
非对称加密算法:
概述:
从DH算法我们可以看到,公钥-私钥组成的密钥对是非常有用的加密方式,因为公钥是可以公开的,而私钥是完全保密的,由此奠定了非对称加密的基础。
非对称加密:加密和解密使用的不是相同的密钥,只有同一个公钥-私钥对才能正常加解密。
非对称加密的优点:对称加密需要协商密钥,而非对称加密可以安全地公开各自的公钥,在N个人之间通信的时候:使用非对称加密只需要N个密钥对,每个人只管理自己的密钥对。而使用对称加密需要则需要N*(N-1)/2个密钥,因此每个人需要管理N-1个密钥,密钥管理难度大,而且非常容易泄漏。
非对称加密的缺点:运算速度非常慢,比对称加密要慢很多。
所以,在实际应用中,总是非对称加密和对称加密一起使用。
例:假设小明需要给小红需要传输加密文件,他俩首先交换了各自的公钥,然后:
1. 小明生成一个随机的AES口令,然后用小红的公钥通过RSA加密这个口令,并发给小红;
2. 小红用自己的RSA私钥解密得到AES口令;
3. 双方使用这个共享的AES口令用AES加密通信。
Java实现RSA算法:
import java.math.BigInteger;
import java.security.GeneralSecurityException;
import java.security.KeyPair;
import java.security.KeyPairGenerator;
import java.security.PrivateKey;
import java.security.PublicKey;
import javax.crypto.Cipher;
// RSA
public class Main {
public static void main(String[] args) throws Exception {
// 明文:
byte[] plain = "Hello, encrypt use RSA".getBytes("UTF-8");
// 创建公钥/私钥对:
Human alice = new Human("Alice");
// 用Alice的公钥加密:
// 获取Alice的公钥,并输出
byte[] pk = alice.getPublicKey();
System.out.println(String.format("public key(公钥): %x", new BigInteger(1, pk)));
// 使用公钥加密
byte[] encrypted = alice.encrypt(plain);
System.out.println(String.format("encrypted(加密): %x", new BigInteger(1, encrypted)));
// 用Alice的私钥解密:
// 获取Alice的私钥,并输出
byte[] sk = alice.getPrivateKey();
System.out.println(String.format("private key(私钥): %x", new BigInteger(1, sk)));
// 使用私钥解密
byte[] decrypted = alice.decrypt(encrypted);
System.out.println("decrypted(解密): " + new String(decrypted, "UTF-8"));
}
}
// 用户类
class Human {
// 姓名
String name;
// 私钥:
PrivateKey sk;
// 公钥:
PublicKey pk;
// 构造方法
public Human(String name) throws GeneralSecurityException {
// 初始化姓名
this.name = name;
// 生成公钥/私钥对:
KeyPairGenerator kpGen = KeyPairGenerator.getInstance("RSA");
kpGen.initialize(1024);
KeyPair kp = kpGen.generateKeyPair();
this.sk = kp.getPrivate();
this.pk = kp.getPublic();
}
// 把私钥导出为字节
public byte[] getPrivateKey() {
return this.sk.getEncoded();
}
// 把公钥导出为字节
public byte[] getPublicKey() {
return this.pk.getEncoded();
}
// 用公钥加密:
public byte[] encrypt(byte[] message) throws GeneralSecurityException {
Cipher cipher = Cipher.getInstance("RSA");
cipher.init(Cipher.ENCRYPT_MODE, this.pk); // 使用公钥进行初始化
return cipher.doFinal(message);
}
// 用私钥解密:
public byte[] decrypt(byte[] input) throws GeneralSecurityException {
Cipher cipher = Cipher.getInstance("RSA");
cipher.init(Cipher.DECRYPT_MODE, this.sk); // 使用私钥进行初始化
return cipher.doFinal(input);
}
}
非对称加密就是加密和解密使用的不是相同的密钥,只有同一个公钥-私钥对才能正常加解密;
今天的文章Java加密与安全总结:(常见哈希算法总结、对称式加密和非对称式加密)分享到此就结束了,感谢您的阅读,如果确实帮到您,您可以动动手指转发给其他人。
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。
如需转载请保留出处:https://bianchenghao.cn/31243.html