matlab做聚类分析

matlab做聚类分析matlab做聚类分析2009-03-2720:07转载一:Matlab提供了两种方法进行聚类分析。一种是利用clusterdata函数对样本数据进行一次聚类,其缺点为可供用户选择的面较窄,不能更改距离的计算方法;另一种是分步聚类:(1)找到数据集合中变量两两之间的相似性和非相似性,用pdist函数计算变量之间的距离;(2)用linkage函数定义变

matlab做聚类分析
2009-03-27 20:07

转载一:

Matlab提供了两种方法进行聚类分析。

一种是利用 clusterdata函数对样本数据进行一次聚类,其缺点为可供用户选择的面较窄,不能更改距离的计算方法;

另一种是分步聚类:(1)找到数据集合中变量两两之间的相似性和非相似性,用pdist函数计算变量之间的距离;(2)用 linkage函数定义变量之间的连接;(3)用 cophenetic函数评价聚类信息;(4)用cluster函数创建聚类。

1.Matlab中相关函数介绍

1.1 pdist函数

调用格式:Y=pdist(X,’metric’)

说明:用 ‘metric’指定的方法计算 X 数据矩阵中对象之间的距离。’

X:一个m×n的矩阵,它是由m个对象组成的数据集,每个对象的大小为n。

metric’取值如下:

‘euclidean’:欧氏距离(默认);‘seuclidean’:标准化欧氏距离;

‘mahalanobis’:马氏距离;‘cityblock’:布洛克距离;

‘minkowski’:明可夫斯基距离;‘cosine’:

‘correlation’: ‘hamming’:

‘jaccard’: ‘chebychev’:Chebychev距离。

1.2 squareform函数

调用格式:Z=squareform(Y,..)

说明: 强制将距离矩阵从上三角形式转化为方阵形式,或从方阵形式转化为上三角形式。

1.3 linkage函数

调用格式:Z=linkage(Y,’method’)

说 明:用‘method’参数指定的算法计算系统聚类树。

Y:pdist函数返回的距离向量;

method:可取值如下:

‘single’:最短距离法(默认); ‘complete’:最长距离法;

‘average’:未加权平均距离法; ‘weighted’: 加权平均法;

‘centroid’:质心距离法; ‘median’:加权质心距离法;

‘ward’:内平方距离法(最小方差算法)

返回:Z为一个包含聚类树信息的(m-1)×3的矩阵。

1.4 dendrogram函数

调用格式:[H,T,…]=dendrogram(Z,p,…)

说明:生成只有顶部p个节点的冰柱图(谱系图)。

1.5 cophenet函数

调用格式:c=cophenetic(Z,Y)

说明:利用pdist函数生成的Y和linkage函数生成的Z计算cophenet相关系数。

1.6 cluster 函数

调用格式:T=cluster(Z,…)

说明:根据linkage函数的输出Z 创建分类。

1.7 clusterdata函数

调用格式:T=clusterdata(X,…)

说明:根据数据创建分类。

T=clusterdata(X,cutoff)与下面的一组命令等价:

Y=pdist(X,’euclid’);

Z=linkage(Y,’single’);

T=cluster(Z,cutoff);

2. Matlab程序

2.1 一次聚类法

X=[11978 12.5 93.5 31908;…;57500 67.6 238.0 15900];

T=clusterdata(X,0.9)

2.2 分步聚类

Step1 寻找变量之间的相似性

用pdist函数计算相似矩阵,有多种方法可以计算距离,进行计算之前最好先将数据用zscore函数进行标准化。

X2=zscore(X); %标准化数据

Y2=pdist(X2); %计算距离

Step2 定义变量之间的连接

Z2=linkage(Y2);

Step3 评价聚类信息

C2=cophenet(Z2,Y2); //0.94698

Step4 创建聚类,并作出谱系图

T=cluster(Z2,6);

H=dendrogram(Z2);

分类结果:{
加拿大},{
中国,美国,澳大利亚},{
日本,印尼},{
巴西},{
前苏联}

剩余的为一类。

MATLAB的统计工具箱中的多元统计分析中提供了聚类分析的两种方法:
1.层次聚类 hierarchical clustering

2.k-means聚类

这里用最简单的实例说明以下层次聚类原理和应用发法。

层次聚类是基于距离的聚类方法,MATLAB中通过pdist、linkage、dendrogram、cluster等函数

来完成。层次聚类的过程可以分这么几步:

(1) 确定对象(实际上就是数据集中的每个数据点)之间的相似性,实际上就是定义一个表征对

象之间差异的距离,例如最简单的平面上点的聚类中,最经常使用的就是欧几里得距离。

这在MATLAB中可以通过Y=pdist(X)实现,例如
>> X=randn(6,2)
X =
    -0.4326     1.1892
    -1.6656    -0.0376
     0.1253     0.3273
     0.2877     0.1746
    -1.1465    -0.1867
     1.1909     0.7258
>> plot(X(:,1),X(:,2),’bo’)    %给个图,将来对照聚类结果把

matlab做聚类分析

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~图1~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

>> Y=pdist(X)
Y =
   Columns 1 through 14
     1.7394     1.0267     1.2442     1.5501     1.6883     1.8277     1.9648     0.5401    

2.9568     0.2228     1.3717     1.1377     1.4790     1.0581
   Column 15
     2.5092
例子中X数据集可以看作包含6个平面数据点,pdist之后的Y是一个行向量,15个元素分别代表X

的第1点与2-6点、第2点与3-6点,……这样的距离。那么对于M个点的数据集X,pdist之后的Y

将是具有M*(M-1)/2个元素的行向量。Y这样的显示虽然节省了内存空间,但对用户来说不是很易

懂,如果需要对这些距离进行特定操作的话,也不太好索引。MATLAB中可以用squareform把Y转

换成方阵形式,方阵中<i,j>位置的数值就是X中第i和第j点之间的距离,显然这个方阵应该是

个对角元素为0的对称阵。
>> squareform(Y)
ans =
          0     1.7394     1.0267     1.2442     1.5501     1.6883
     1.7394          0     1.8277     1.9648     0.5401     2.9568
     1.0267     1.8277          0     0.2228     1.3717     1.1377
     1.2442     1.9648     0.2228          0     1.4790     1.0581
     1.5501     0.5401     1.3717     1.4790          0     2.5092
     1.6883     2.9568     1.1377     1.0581     2.5092          0
这里需要注意的是,pdist可以使用多种参数,指定不同的距离算法。help pdist把。
另外,当数据规模很大时,可以想象pdist产生的Y占用内存将是很吓人的,比如X有10k个数据点

,那么X占10k*8*2Bytes=160K,这看起来不算啥,但是pdist后的Y会有10k*10k/2*8Bytes=400M

。怕了把,所以,废话说在前面,用MATLAB的层次聚类来处理大规模数据,大概是很不合适的。
(2) 确定好了对象间的差异度(距离)后,就可以用Z=linkage(Y)来产生层次聚类树了。
>> Z=linkage(Y)
Z =
     3.0000     4.0000     0.2228
     2.0000     5.0000     0.5401
     1.0000     7.0000     1.0267
     6.0000     9.0000     1.0581
     8.0000    10.0000     1.3717
对于M个元素的X,前面说了Y是1行M*(M-1)/2的行向量,Z则是(M-1)*3的矩阵。
Z数组的前两列是索引下标列,最后一列是距离列。例如上例中表示在产生聚类树的计算过程中

,第3和第4点先聚成一类,他们之间的距离是0.2228,以此类推。要注意的是,为了标记每一个

节点,需要给新产生的聚类也安排一个标识,MATLAB中会将新产生的聚类依次用M+1,M+2,….依

次来标识。比如第3和第4点聚成的类以后就用7来标识,第2和第5点聚成的类用8来标识,依次类

推。
通过linkage函数计算之后,实际上二叉树式的聚类已经完成了。Z这个数据数组不太好看,可以

用dendrogram(Z)来可视化聚类树。

matlab做聚类分析

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~图2~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

可以看到,产生的聚类树的每一层都是一个倒置的U型(或者说是个n型,~~),纵轴高度代表了

当前聚类中两个子节点之间的距离。横轴上标记出了各个数据点索引下标。
稍微注意以下的是,dendrogram默认最多画30个最底层节点,当然可是设置参数改变这个限制,

比如dendrogram(Z,0)就会把所有数据点索引下标都标出来,但对于成千上万的数据集合,这样

的结果必然是图形下方非常拥挤。看你的应用目的了,随你玩~

(3)初步的聚类树画完后,还要做很多后期工作的,包括这样的聚类是不是可靠,是不是代表了

实际的对象分化模式,对于具体的应用,应该怎样认识这个完全版的聚类树,产生具有较少分叉

的可供决策参考的分类结果呢?这都是需要考虑的。

MATLAB中提供了cluster, clusterdata, cophenet, inconsistent等相关函数。

cluster用于剪裁完全版的聚类树,产生具有一定cutoff的可用于参考的树。
clusterdata可以认为是pdist,linkage,cluster的综合,当然更简易一点。
cophenet和inconsistent用来计算某些系数,前者用于检验一定算法下产生的二叉聚类树和实际

情况的相符程度(就是检测二叉聚类树中各元素间的距离和pdist计算产生的实际的距离之间有

多大的相关性),inconsistent则是量化某个层次的聚类上的节点间的差异性(可用于作为

cluster的剪裁标准)。

后面这些的理解,大概需要对聚类有一个更深刻更数学的认识,我也不是很清楚,就不多说了。

from http://hi.baidu.com/coralliu/blog/item/dbde033b168fedeb15cecbe5.html

 

 

MATLAB提供了两种方法进行聚类分析:

1、利用clusterdata 函数对数据样本进行一次聚类,这个方法简洁方便,其特点是使用范围较窄,不能由用户根据自身需要来设定参数,更改距离计算方法;

2、分步聚类:(1)用pdist函数计算变量之间的距离,找到数据集合中两辆变量之间的相似性和非相似性;(2)用linkage函数定义变量之间的连接;(3)用cophenetic函数评价聚类信息;(4)用cluster函数进行聚类。

下边详细介绍两种方法:

1、一次聚类

Clusterdata函数可以视为pdist、linkage与cluster的综合,一般比较简单。

【clusterdata函数:

调用格式:T=clusterdata(X,cutoff)     

                     等价于Y=pdist(X,’euclid’); Z=linkage(Y,’single’); T=cluster(Z,cutoff) 】

2、分步聚类

(1)求出变量之间的相似性

用pdist函数计算出相似矩阵,有多种方法可以求距离,若此前数据还未无量纲化,则可用zscore函数对其标准化

【pdist函数:调用格式:Y=pdist(X,’metric’)

说明:X是M*N矩阵,为由M个样本组成,每个样本有N个字段的数据集

         metirc取值为:’euclidean’:欧氏距离(默认)‘seuclidean’:标准化欧氏距离;‘mahalanobis’:马氏距离… 】

pdist生成一个M*(M-1)/2个元素的行向量,分别表示M个样本两两间的距离。这样可以缩小保存空间,不过,对于读者来说却是不好操作,因此,若想简单直观的表示,可以用squareform函数将其转化为方阵,其中x(i,j)表示第i个样本与第j个样本之的距离,对角线均为0.

(2)用linkage函数来产生聚类树

【linkage函数:调用格式:Z=linkage(Y,’method’)

说明:Y为pdist函数返回的M*(M-1)/2个元素的行向量,

   method可取值:‘single’:最短距离法(默认);’complete’:最长距离法;

                                   ‘average’:未加权平均距离法;’weighted’:加权平均法

                              ‘centroid’: 质心距离法;      ‘median’:加权质心距离法;

                               ‘ward’:内平方距离法(最小方差算法)】

返回的Z为一个(M-1)*3的矩阵,其中前两列为索引标识,表示哪两个序号的样本可以聚为同一类,第三列为这两个样本之间的距离。另外,除了M个样本以外,对于每次新产生的类,依次用M+1、M+2、…来标识。

为了表示Z矩阵,我们可以用更直观的聚类数来展示,方法为:dendrogram(Z), 产生的聚类数是一个n型树,最下边表示样本,然后一级一级往上聚类,最终成为最顶端的一类。纵轴高度代表距离列。

         另外,还可以设置聚类数最下端的样本数,默认为30,可以根据修改dendrogram(Z,n)参数n来实现,1<n<M。dendrogram(Z,0)则表n=M的情况,显示所有叶节点。

(3)用cophenetic函数评价聚类信息

【cophenet函数:   调用格式:c=cophenetic(Z,Y)

   说明:利用pdist函数生成的Y和linkage函数生成的Z计算cophenet相关系数。】

cophene检验一定算法下产生的二叉聚类树和实际情况的相符程度,就是检测二叉聚类树中各元素间的距离和pdist计算产生的实际的距离之间有多大的相关性,另外也可以用inconsistent表示量化某个层次的聚类上的节点间的差异性。

(4)最后,用cluster进行聚类,返回聚类列。

今天的文章matlab做聚类分析分享到此就结束了,感谢您的阅读,如果确实帮到您,您可以动动手指转发给其他人。

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。
如需转载请保留出处:https://bianchenghao.cn/32790.html

(0)
编程小号编程小号

相关推荐

发表回复

您的电子邮箱地址不会被公开。 必填项已用*标注