matlab画三维图像(plot3,mesh,surf)

matlab画三维图像(plot3,mesh,surf)我可能真的太闲了吧···在网上看到这图觉得挺好看:t=0:pi/360:2*pi;x=sin(t);y=cos(t);z=2*x.^2+y.^2;figureplot3(x,y,z,’Color’,’r’,’LineWidth’,2);xlabel(‘x’);ylabel(‘y’);zlabel(‘z’);title(‘z=(cost)^2+2*(sint)^2’);ax…

二维函数的图像必须用三维坐标系画,很多函数的图像长得很好看,很有意思。会可视化也会有利于我们理解更深刻。

(1)plot3,三维曲线图

在网上看到这图觉得挺好看:

t=0:pi/360:2*pi;
x=sin(t);
y=cos(t);
z=2*x.^2+y.^2;
figure
plot3(x,y,z,'Color','r','LineWidth',2);
xlabel('x');
ylabel('y');
zlabel('z');
title('z=(cos t)^2+2*(sin t)^2');
axis([-1.2 1.2 -1.2 1.2 1 2.2]);

在这里插入图片描述

(2)mesh,网面图

clear all,clc;
t=-0.5:.01:0.5;
[x,y]=meshgrid(t);%形成格点矩阵
z=sin(4*pi*x)+cos(6*pi*y);
figure(1)
mesh(x,y,z);
axis([-0.5 0.5 -0.5 0.5 -2 2]);
title('z=sin(4*pi*x)+cos(6*pi*y); mesh')
colormap cool%cool是一种配色方案,还有其他方案如winter,summer····见help colormap
colorbar

在这里插入图片描述

画个二元函数,观察采样后频谱的混叠现象

在这里插入图片描述

二元函数图像的绘制还是把变量分为多个离散点绘制,只是增大点数。

clear all,clc;
t=-1:.01:1;
[x,y]=meshgrid(t);%形成格点矩阵
f=cos(2*pi*(2*x-y));
figure(1)
mesh(x,y,f);grid on
xlabel('x');
ylabel('y');
zlabel('f');
axis([-0.5 0.5 -1 1 -1.5 1.5]);
title('f=cos[2*pi(2x-y)]; mesh')
colormap winter
colorbar

在这里插入图片描述
先手动计算一下它的二位傅里叶变换:
不想打公式(逃)

在这里插入图片描述


F= fft2(f);%做二维DFT变换,把连续函数取样得到一个矩阵,把这个矩阵当图像一样处理
figure(2)
subplot(121),imshow(abs(F),[]);title('函数f=cos(2*pi(2x-y))二维频谱')
F=fftshift(F);%使用matlab的fftshift函数把低频分量移到频谱中心
subplot(122),imshow(abs(F),[]);title('中心化频谱')

在这里插入图片描述

t=-1.1:.333:1.1;%以频率3采样(题目要求)
[x,y]=meshgrid(t);%形成格点矩阵
f=cos(2*pi*(2*x-y));
figure(1)
mesh(x,y,f);grid on
xlabel('x');
ylabel('y');
zlabel('f');
axis([-1 1 -1 1 -1.5 1.5]);
title('采样后的f=cos[2*pi(2x-y)]; mesh')
colormap winter
colorbar

F= fft2(f);%做二维DFT变换,把连续函数取样得到一个矩阵,把这个矩阵当图像一样处理
figure(2)
subplot(121),imshow(abs(F),[]);title('函数f=cos(2*pi(2x-y))采样后的二维频谱')
F=fftshift(F);%使用matlab的fftshift函数把低频分量移到频谱中心
subplot(122),imshow(abs(F),[]);title('中心化频谱')

采样后信号:
在这里插入图片描述
采样后信号频谱:
函数的x方向频率是2,y方向频率是1,所以一定会有混叠失真
可以看出频谱的能量中心的相对位置都不对,这就是混叠失真引起的

在这里插入图片描述

t=-1.1:.17:1.1;%以更高频率采样
[x,y]=meshgrid(t);%形成格点矩阵
f=cos(2*pi*(2*x-y));
figure(1)
mesh(x,y,f);grid on
xlabel('x');
ylabel('y');
zlabel('f');
axis([-1 1 -1 1 -1.5 1.5]);
title('采样后的f=cos[2*pi(2x-y)]; mesh')
colormap winter
colorbar

F= fft2(f);%做二维DFT变换,把连续函数取样得到一个矩阵,把这个矩阵当图像一样处理
figure(2)
subplot(121),imshow(abs(F),[]);title('函数f=cos(2*pi(2x-y))采样后的二维频谱')
F=fftshift(F);%使用matlab的fftshift函数把低频分量移到频谱中心
subplot(122),imshow(abs(F),[]);title('中心化频谱')

以更大的采样频率采样,避免不满足奈奎斯特定理产生混叠:
可见得到的频谱和连续函数的频谱更相似。采样频率越大,得到的频谱和连续函数的频谱越相似
在这里插入图片描述

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。
如需转载请保留出处:https://bianchenghao.cn/39002.html

(0)
编程小号编程小号

相关推荐

发表回复

您的电子邮箱地址不会被公开。 必填项已用 * 标注