python 非线性规划(scipy.optimize.minimize)

python 非线性规划(scipy.optimize.minimize)一.背景:现在项目上有一个用python实现非线性规划的需求。非线性规划可以简单分两种,目标函数为凸函数or非凸函数。凸函数的非线性规划,比如fun=x^2+y^2+x*y,有很多常用的python库来完成,网上也有很多资料,比如CVXPY非凸函数的非线性规划(求极值),从处理方法来说,可以尝试以下几种:1.纯数学方法,求导求极值;2.使用神经网络,深度学习来处理,可参考…

一.背景:现在项目上有一个用python 实现非线性规划的需求。非线性规划可以简单分两种,目标函数为凸函数 or 非凸函数。

凸函数的 非线性规划,比如fun=x^2+y^2+x*y,有很多常用的python库来完成,网上也有很多资料,比如CVXPY

非凸函数的 非线性规划(求极值),从处理方法来说,可以尝试以下几种:

1.纯数学方法,求导求极值;

2.使用神经网络,深度学习来处理,可参考反向传播算法中链式求导的过程;

3.寻找一些python库来做,本文介绍scipy.optimize.minimize的使用方法

二.库方法介绍

官方文档:https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.minimize.html

来看下改方法的入参 

scipy.optimize.minimize(fun, x0, args=(), method=None, jac=None, hess=None, hessp=None, bounds=None, constraints=(), tol=None, callback=None, options=None)

解释:

fun: 求最小值的目标函数

x0:变量的初始猜测值,如果有多个变量,需要给每个变量一个初始猜测值。minimize是局部最优的解法,所以

args:常数值,后面demo会讲解,fun中没有数字,都以变量的形式表示,对于常数项,需要在这里给值

method:求极值的方法,官方文档给了很多种。一般使用默认。每种方法我理解是计算误差,反向传播的方式不同而已,这块有很大理论研究空间

constraints:约束条件,针对fun中为参数的部分进行约束限制

 

三.demo

1.计算 1/x+x 的最小值

# coding=utf-8
from scipy.optimize import minimize
import numpy as np

#demo 1
#计算 1/x+x 的最小值
 def fun(args):
     a=args
     v=lambda x:a/x[0] +x[0]
     return v

 if __name__ == "__main__":
     args = (1)  #a
     x0 = np.asarray((2))  # 初始猜测值
     res = minimize(fun(args), x0, method='SLSQP')
     print(res.fun)
     print(res.success)
     print(res.x)

执行结果:函数的最小值为2点多,可以看出minimize求的局部最优

python 非线性规划(scipy.optimize.minimize)

2.计算  (2+x1)/(1+x2) – 3*x1+4*x3 的最小值  x1,x2,x3的范围都在0.1到0.9 之间

# coding=utf-8
from scipy.optimize import minimize
import numpy as np

# demo 2
#计算  (2+x1)/(1+x2) - 3*x1+4*x3 的最小值  x1,x2,x3的范围都在0.1到0.9 之间
def fun(args):
    a,b,c,d=args
    v=lambda x: (a+x[0])/(b+x[1]) -c*x[0]+d*x[2]
    return v
def con(args):
    # 约束条件 分为eq 和ineq
    #eq表示 函数结果等于0 ; ineq 表示 表达式大于等于0  
    x1min, x1max, x2min, x2max,x3min,x3max = args
    cons = ({'type': 'ineq', 'fun': lambda x: x[0] - x1min},\
              {'type': 'ineq', 'fun': lambda x: -x[0] + x1max},\
             {'type': 'ineq', 'fun': lambda x: x[1] - x2min},\
                {'type': 'ineq', 'fun': lambda x: -x[1] + x2max},\
            {'type': 'ineq', 'fun': lambda x: x[2] - x3min},\
             {'type': 'ineq', 'fun': lambda x: -x[2] + x3max})
    return cons

if __name__ == "__main__":
    #定义常量值
    args = (2,1,3,4)  #a,b,c,d
    #设置参数范围/约束条件
    args1 = (0.1,0.9,0.1, 0.9,0.1,0.9)  #x1min, x1max, x2min, x2max
    cons = con(args1)
    #设置初始猜测值  
    x0 = np.asarray((0.5,0.5,0.5))
    
    res = minimize(fun(args), x0, method='SLSQP',constraints=cons)
    print(res.fun)
    print(res.success)
    print(res.x)

执行结果:

python 非线性规划(scipy.optimize.minimize)

对于这种简单的函数,可以看出局部最优的求解和真实最优解相差不大,对于复杂的函数,x0的初始值设置,会很大程度影响最优解的结果。

ADD:

全局最优的函数: scipy.optimize.basinhopping

有一个缺点是无法设置约束,求全局的最优解的函数

https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.basinhopping.html

今天的文章python 非线性规划(scipy.optimize.minimize)分享到此就结束了,感谢您的阅读。

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。
如需转载请保留出处:https://bianchenghao.cn/5625.html

(0)
编程小号编程小号

相关推荐

发表回复

您的电子邮箱地址不会被公开。 必填项已用*标注