数学史上的奇迹

数学史上的奇迹公元1852年,毕业于英国伦敦大学并从事地图着色工作的佛朗西斯·格里斯,发现了一个奇怪的现象:无论多么复杂的地图,只要用四种颜色,就可以区分有公共边界的国家和地区

 

公元1852年,毕业于英国伦敦大学并从事地图着色工作的佛朗西斯·格里斯,发现了一个奇怪的现象:无论多么复杂的地图,只要用四种颜色,就可以区分有公共边界的国家和地区。佛朗西斯觉得这中间一定有着什么奥妙,于是写信向其胞兄佛德雷克询问。佛德雷克对数学造诣颇深,但绞尽脑汁依然不得要领,只好求教于自己的老师,著名的英国数学家摩根(Morgan,1806~1871)。摩根教授怀着浓厚的兴趣,对此苦苦思索了几个昼夜,觉得无法判定佛德雷克所提的问题是对还是错。于是便写信给挚友,著名的数学家哈密尔顿(Hmilton,1805~1865)探讨。

摩根在信中希望哈密尔顿要么能证明“如果一张地图,图上任意分成许多部分,要求有共同边界的两部分涂不同颜色,那么只要四种颜色就够了”,要么构造出一个需要五种或更多种颜色的图来。

然而,智慧超人的哈密尔顿没能做到。他耗费了整整13年心血,终于一筹莫展,抱恨逝去!

哈密尔顿死后,又过了13年,一位颇有名望的英国数学家凯莱(Cayley,1821~1895)在一次数学年会上把这个问题归纳为“四色猜想”。并于次年,即公元1879年,在英国皇家地理会刊的创刊号上,公开征求对“四色猜想”的解答。从此,“四色猜想”不胫而走,成为街谈巷议的热题。

但上述状态井没有持续很久。在征解消息发出的同年,一位半路出家的数学家肯普,发表了一个关于四色定理的证明。这使曾经出现的一时轰动很快平息下来。人们普遍以为“四色猜想”已经成为历史。不料过了11年,即公元1890年,一个名叫赫伍德的青年,指出了肯普在证明中的错误。从而使这一沉熄了10年之久的问题,又重新燃起了熊熊的烈火!与此同时,赫伍德匠心独运,利用肯普提供的方法,成功地证明了用五种颜色能够区分地图上相邻的国家。这算是在向“四色猜想”进军中第一个重大的突破!

赫伍德关于“五色定理”的证明其实并不难。首先,他如同上图那样,对问题加以简化:即把原图上的每个顶点,换成围绕顶点的一个小区域。很明显,如果后一张地图能够用五种颜色染色,那么原图也一定能够用五种颜色染色。所以今后我们就只讨论顶点是三个国家界点的地图。

现在转到证明本身。设f2是边界只有两个顶点的国家数;f3是边界有3个顶点的国家数;……显然,国家总数目f:

f=f2+f3+f4……

由于f2这类国家有两个顶点,因而有两条边界,从而这类国家共有2f2条边界。同理f3类国家共有3f3条边界。如此等等。又由于每条边界都连接着两个国家。从而,边界总数目e满足:

2e=2f2+3f3+4f4+……

对于顶点总数目v,同理有

3v=2f2+3f3+4f4+……

由上两式得:

3v=2e

根据上一节结尾证明的欧拉定理知道:

v+f=e+2

消去e可得:

6f=3v+12

即6(f2+f3+f4……)=(2f2+3f3+4f4+……)+12

化简有:4f2+3f3+2f4+f5=12+f7+2f8+……

由于上式右端不小于12,因而左端必有一项大于0。这样,赫伍德便得到了一个很重要的结论:“每张交点有三个国家相遇的地图,至少有一个国家边界数不多于5。”

接下去赫伍德用了上一节讲到的数学归纳法:

【证】当国家数f=2时命题显然成立。

假令f≤k时命题成立。即对所有交点有三个国家相遇,且国家数不多于k的地图,可用五种颜色染色。

则当f=k+1时,根据前面讲的,这样的地图必有一个边数不多于5的国家。不妨令A就是这样的国家吧!

很明显,与国家A相邻的国家和区域,不外乎上页图中的三种情况:图a是有一个国家与A有两条边界;图b是与A相邻的两个国家,本身有共同的边界;图c是最常见的,不存在环形的情况。不难理解,无论上面三种情形的哪一种,在A的邻国中,总存在两个不相邻接的国家,如同上图的A1与A3。

现在去掉A与A1、A3的边界,则新图有k-1个国家,因而这样的图能用五种颜色染色。

设此时(A+A1+A3)染甲色;A2、A4、A5分别染乙、丙、丁色。添上两条边界,变回原图,再让A染上第五种颜色。于是,原图已被用五种颜色染色。

这就是说,命题对于f=k+1也成立。

综合上述,根据归纳假设,即针对于所有交点有三个国家相遇的地图,只要用五颜色染色就足够了!

赫伍德就这样证明了五色定理。

正因为五色定理的证明不很难,所以与费尔马猜想及哥德巴赫猜想不同,有不少数学家小看了四色猜想。相对论的创始人,伟大物理学家爱因斯坦的数学导师闵可夫斯基(Minkowski,1864~1909)教授,就是其中最为典型的一个。他认为四色猜想之所以没有解决,是因为世界上第一流的数学家还没有空去研究它。

有一次,教授给学生上课,他偶然间提到这个问题,随之即兴推演,似乎成竹在胸,写了满满一个黑板,但命题仍未得证。第二次上课,闵可夫斯基又继续推演,结果仍旧是满怀信心进教室,垂头丧气下讲台。如此这般折腾了几个星期之后,教授终于精疲力竭。一天,他走进教室,疲惫地注视着依旧着“证明”的黑板。此时适逢雷电交加,他终于醒悟,并愧疚地承认:“上帝在责备我,四色问题我无能为力!”这以后,全世界数学家都掂出了“四色猜想”的沉重份量。

人类智慧面对着又一个世界难题的挑战。在正面失利之后,数学家们决定从侧面进军!

1922年,有人证明了国家数f≤25时四色猜想成立;1938年,国家数f推进到32;1969年又推进到45。47个春秋,仅仅使国家数推进了20。这确是一条布满荆棘、令人生畏的路!主要困难是构形的可能性太多,需要做两百亿次的逻辑判定,这远不是一个人的力量所能做到的!人们对此望而生畏了!

就在这时,科学的地平线上出现了一道曙光!电子计算机的运用,使四色猜想的证实有了希望。然而在70年代初,即使是电子计算机,也要连续算上11年半!这是何等艰难的目标,但人类并有没放弃这种机会,进军的号角吹响了!科学家们通力合作,一面不断改进方法减少判断次数,一面继续提高计算机的计算速度,使问题的解决终于有了眉目。

公元1976年9月,美国伊利诺斯大学的数学家阿沛尔和哈肯教授,运用每秒计算400万次的电子计算机,在运转1200小时后,终于成功地完成了“四色定量”的证明工作。

电波传来,寰宇震动!数学史上的三大难题之一,在人与计算机的“合作”下,终于被征服了!这是亘古未有的奇迹!为纪念这一历史性的时刻与史诗般的功绩,在宣布四色定理得证的当天,伊利诺斯大学邮局加盖了以下邮戳:

“Four colors suffice!”(四种颜色足够了!)

from3A教育
 

<script type=”text/javascript”> google_ad_client = “pub-2416224910262877”; google_ad_width = 728; google_ad_height = 90; google_ad_format = “728x90_as”; google_ad_channel = “”; google_color_border = “E1771E”; google_color_bg = “FFFFFF”; google_color_link = “0000FF”; google_color_text = “000000”; google_color_url = “008000”; </script><script type=”text/javascript” src=”http://pagead2.googlesyndication.com/pagead/show_ads.js”> </script>今天的文章数学史上的奇迹分享到此就结束了,感谢您的阅读。

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。
如需转载请保留出处:https://bianchenghao.cn/64058.html

(0)
编程小号编程小号

相关推荐

发表回复

您的电子邮箱地址不会被公开。 必填项已用*标注