大数据本身的特点通常集中在五个方面,即数据量,数据结构多样性,数据价值密度,数据增长速度和可信度对这五个维度的理解和认识是理解大数据概念的关键。当然,随着大数据技术的发展及其在行业中的应用,数据本身的规模也在一定程度上得到了扩展,而这些扩展本身也是对大数据概念的一种丰富和改进。而大数据分析的特点和以上五个方面也是密不可分的。
大数据分析的特点一:数据分析量大
数据量本身就是聚合的概念。不是数据量大的数据被称为大数据,传统信息系统生成的“小数据”也是大数据分析的重要组成部分,这点必须清楚。当前,从大数据的数据源的角度来看,它主要集中在互联网,物联网和传统信息系统三个渠道。当前物联网数据的比例相对较大。相信在5G时代,物联网仍将是大数据的主要数据源。
大数据分析的特点二:数据分析结构多样性
与创新信息系统(ERP)中的数据不同,大数据的数据类型非常复杂,包括结构化数据,非结构化数据和半结构化数据,这对传统数据分析技术提出了巨大挑战,这也是大数据技术兴起的重要原因。在工业互联网时代,大数据数据结构的多样性将得到进一步体现,这也给数据价值过程带来了新的挑战。
大数据分析的特点三:数据价值密度
与传统信息系统相比,大数据中的数据价值密度相对较低,这就需要更快,更方便的方式来完成数据值提取过程,这也是当前大数据平台所关注的核心竞争力之一。实际上,早期Hadoop和Spark平台之所以能够脱颖而出的重要原因是它们的数据处理(排序)速度相对较快。
大数据分析的特点四:数据增长速度快
通常传统信息系统的数据增量是可以预测的,或者增长率是可控的,但是在大数据时代,数据增长率已经大大超过了传统数据,处理能力已经超过自身的极限。数据增长是一个相对的概念。与消费互联网相比,工业互联网带来的数据增长可能更加客观,因此工业互联网时代将进一步打开大数据的价值空间。
大数据分析的特点五:数据的可靠性
大数据时代带来的一个重要副作用是,很难区分真假数据,这也是当前大数据技术必须重点解决的问题之一。从当前大型Internet平台采用的方法来看,它通常是技术和管理的结合。例如,通过对用户进行身份验证,可以解决某些数据的真实性(专业性)问题。
数据价值密度通常是衡量数据价值的重要基础。与传统信息系统相比,大数据中的数据值密度较低,需要更快,更方便。完成数据的价值提取过程,这也是当前大数据平台的核心功能之一。
今天的文章大数据分析的五大特点是什么_大数据分析的三个要素分享到此就结束了,感谢您的阅读。
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。
如需转载请保留出处:https://bianchenghao.cn/70498.html