数学归纳法及例题分析及答案_变换分析法例题及答案[通俗易懂]

数学归纳法及例题分析及答案_变换分析法例题及答案[通俗易懂]前言学算法,不得不提的就是数学归纳法

前言

学算法,不得不提的就是数学归纳法。许多算法都会用到归纳假设的思想,其追溯回去便是数学归纳法。

数学归纳法

最简单和常见的数学归纳法是证明当n等于任意一个自然数时某命题成立。证明分下面两步:

  1. 证明当n = 1时命题成立。
  2. 证明如果在n = k时命题成立,那么可以推导出在n = k+1时命题也成立。(k代表任意自然数)

这种方法的原理在于:首先证明在某个起点值时命题成立,然后证明从一个值到下一个值的过程有效。当这两点都已经证明,那么任意值都可以通过反复使用这个方法推导出来。把这个方法想成多米诺效应也许更容易理解一些。例如:你有一列很长的直立着的多米诺骨牌,如果你可以:

  1. 证明第一张骨牌会倒。
  2. 证明只要任意一张骨牌倒了,那么其下一张骨牌也会因为前面的骨牌倒而跟着倒。

那么便可以下结论:所有的骨牌都会倒下。

应用举例

1. 前n项和

证明:S(n) = 1 + 2 + 3  ….  + n 前n项和为n(n + 1) / 2

n = 1, S(1)  = 1

假设n时命题成立

N+ 1时,

S(n  + 1) 

=  S(n) + n + 1

= n(n + 1)/2 + n + 1

= (n + 1)(n + 2)/ 2

成立

2. 区域计数

问n条居一般位置的直线能将平面分成多少个区域

定义:一般位置, 任意两线不平行,任意三线不共点。

现在草稿纸上看看简单的情况,看看有没有规律。

直线 — 区域

1 —  2

2 — 4

3 — 7

4 — 11

数学归纳法及例题分析及答案_变换分析法例题及答案[通俗易懂]

 

 

找规律 第n条直线能比n-1条直线的区域多n个

证明: 在平面内n- 1条居一般位置的直线添加一条直线会增加n个区域

n <= 3 时 显然成立

假设n-1条直线时成立

今天的文章数学归纳法及例题分析及答案_变换分析法例题及答案[通俗易懂]分享到此就结束了,感谢您的阅读。

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。
如需转载请保留出处:http://bianchenghao.cn/75181.html

(0)
编程小号编程小号

相关推荐

发表回复

您的电子邮箱地址不会被公开。 必填项已用*标注