子群和群同态

子群和群同态文章介绍了群论的基本概念 包括群 子群的定义和性质 如子群的封闭性和逆性质 以及群同态和群同构的概念 证明了同态保持群结构并阐述了同构意味着两个群的结构完全相同

子群

定义:设 < G , ⋅ > \left<G,\cdot\right> G,是群, H H H G G G的非空子集。若 < H , ⋅ > \left<H,\cdot\right> H,也是群,则称 < H , ⋅ > \left<H,\cdot\right> H, < G , ⋅ > \left<G,\cdot\right> G,子群
记作 H ≤ G H\le G HG
H H H G G G的真子集,则称 < H , ⋅ > \left<H,\cdot\right> H, < G , ⋅ > \left<G,\cdot\right> G,的真子群,记作 H < G H<G H<G

任意群 < G , ⋅ > , < G , ⋅ > \left<G,\cdot\right>,\left<G,\cdot\right> G,,G, < { e } , ⋅ > \left<\left\{e\right\},\cdot\right> { e},都是 < G , ⋅ > \left<G,\cdot\right> G,的子群,称为平凡子群

定理1:设 < G , ⋅ > \left<G,\cdot\right> G,是群, H ≤ G H\le G HG,则
(1) H H H的单位就是 G G G的单位;
(2) ∀ a ∈ H \forall a \in H aH a a a H H H中的逆就是 a a a G G G中的逆
证明:(1)设 e H e_H eH e G e_G eG分别为 H H H G G G的单位,则 e H ⋅ e H = e H = e G ⋅ e H e_H\cdot e_H = e_H = e_G\cdot e_H eHeH=eH=eGeH
由消去律, e H = e G e_H=e_G eH=eG
(2) ∀ a ∈ H \forall a \in H aH,设 a a a H H H G G G中的逆分别为 a H − 1 a_H^{-1} aH1 a G − 1 a_G^{-1} aG1
a ⋅ a H − 1 = e H = e G = a ⋅ a G − 1 a\cdot a_H^{-1} = e_H=e_G = a\cdot a_G^{-1} aaH1=eH=eG=aaG1,由消去律, a H − 1 = a G − 1 a_H^{-1}=a_G^{-1} aH1=aG1

定理2:设 H H H是群 < G , ⋅ > \left<G,\cdot\right> G,的非空子集,则 H ≤ G H\le G HG当且仅当
(1) ∀ a , b ∈ H \forall a,b\in H a,bH a ⋅ b ∈ H a\cdot b\in H abH
(2) ∀ a ∈ H \forall a \in H aH a − 1 ∈ H a^{-1} \in H a1H
证明:
必要性:因为 < H , ⋅ > \left<H,\cdot\right> H,是群,所以封闭性(1)成立,由定理1,(2)成立
充分性:只需证明由单位
因为 H ≠ ∅ H\neq \empty H=,所以有 a ∈ H a\in H aH
由(2), a − 1 ∈ H a^{-1}\in H a1H,由(1) e = a ⋅ a − 1 ∈ H e=a\cdot a^{-1}\in H e=aa1H e e e就是 H H H的单位
< H , ⋅ > \left<H,\cdot\right> H,是群, H ≤ G H\le G HG

定理3:设 < G , ⋅ > \left<G,\cdot\right> G,是群, H H H G G G的非空子集,则 H ≤ G H\le G HG当且仅当 ∀ a , b ∈ H , a ⋅ b − 1 ∈ H \forall a,b\in H,a\cdot b^{-1}\in H a,bH,ab1H
证明:
必要性:因为 < H , ⋅ > \left<H,\cdot\right> H,是群,所以 ∀ a , b ∈ H , b − 1 ∈ H \forall a,b\in H, b^{-1}\in H a,bH,b1H,由封闭性, a ⋅ b − 1 ∈ H a\cdot b^{-1}\in H ab1H
充分性:
因为 H ≠ ∅ H\neq \empty H=,所以 a ∈ H a\in H aH,从而 e = a ⋅ a − 1 ∈ H e = a\cdot a^{-1}\in H e=aa1H
∀ a ∈ H , a − 1 = e ⋅ a − 1 ∈ H \forall a\in H,a^{-1} = e\cdot a^{-1}\in H aH,a1=ea1H
∀ a , b ∈ H \forall a,b\in H a,bH b − 1 ∈ H b^{-1}\in H b1H,所以 a ⋅ b = a ⋅ ( b − 1 ) − 1 ∈ H a\cdot b = a\cdot \left(b^{-1}\right)^{-1}\in H ab=a(b1)1H
由定理2, H ≤ G H\le G HG

定理4:设 < G , ⋅ > \left<G,\cdot\right> G,是群, H H H G G G的非空有限子集,若 H H H关于 ⋅ \cdot 封闭,则 H ≤ G H\le G HG

证明:设 ∣ H ∣ = n \left|H\right| = n H=n
∀ a ∈ H \forall a\in H aH,在 a , a 2 , ⋯   , a n + 1 a, a^2,\cdots, a^{n+1} a,a2,,an+1中必有两个相同,设为 a i = a j a^{i} = a^{j} ai=aj
其中 1 ≤ i < j ≤ n + 1 1\le i < j \le n +1 1i<jn+1,则 a j − i = e a^{j-i} =e aji=e
因为 2 ( j − i ) − 1 ≥ 1 2\left(j-i\right) - 1 \ge 1 2(ji)11,由 H H H关于 ⋅ \cdot 封闭, a 2 ( j − i ) − 1 ∈ H a^{2\left(j-i\right)-1}\in H a2(ji)1H,又
a 2 ( j − i ) − 1 ⋅ a = a ⋅ a 2 ( j − i ) − 1 = a 2 ( j − i ) = e a^{2\left(j-i\right)-1}\cdot a = a \cdot a^{2\left(j-i\right)-1}=a^{2\left(j-i\right)}=e a2(ji)1a=aa2(ji)1=a2(ji)=e
所以 a − 1 = a 2 ( j − i ) − 1 ∈ H a^{-1} = a^{2\left(j-i\right)-1}\in H a1=a2(ji)1H,由定理2, H ≤ G H\le G HG

群同态

定义:设 < G 1 , ∗ > \left<G_1,*\right> G1, < G 2 , ⋅ > \left<G_2,\cdot\right> G2,是群,函数 h : G 1 → G 2 h:G_1\to G_2 h:G1G2
∀ a , b , ∈ G 1 \forall a,b,\in G_1 a,b,G1 h ( a ∗ b ) = h ( a ) ⋅ h ( b ) h\left(a*b\right) = h\left(a\right) \cdot h\left(b\right) h(ab)=h(a)h(b),则称 h h h为从 < G 1 , ∗ > \left<G_1,*\right> G1, < G 2 , ⋅ > \left<G_2,\cdot \right> G2,群同态,若 h h h是双射,则称 h h h群同构

定理:设 h h h为从 < G 1 , ∗ > \left<G_1,*\right> G1, < G 2 , ⋅ > \left<G_2,\cdot\right> G2,的群同态, e 1 e_1 e1 e 2 e_2 e2分别为 G 1 G_1 G1 G 2 G_2 G2的单位,则
(1) h ( e 1 ) = e 2 h\left(e_1\right) = e_2 h(e1)=e2
(2) ∀ a ∈ G 1 , h ( a − 1 ) = h ( a ) − 1 \forall a \in G_1, h\left(a^{-1}\right) = h\left(a\right)^{-1} aG1,h(a1)=h(a)1
(3)若 H ≤ G 1 H\le G_1 HG1,则 h ( H ) ≤ G 2 h\left(H\right) \le G_2 h(H)G2
(4)若 h h h为单一同态,则 ∀ a ∈ G 1 , ∣ h ( a ) ∣ = ∣ a ∣ \forall a \in G_1,\left|h\left(a\right)\right| = \left|a\right| aG1,h(a)=a

证明:
(1)因为 h ( e 1 ) = h ( e 1 ∗ e 1 ) = h ( e 1 ) ⋅ h ( e 1 ) h\left(e_1\right) = h\left(e_1*e_1\right) = h\left(e_1\right) \cdot h\left(e_1\right) h(e1)=h(e1e1)=h(e1)h(e1),由消去律 h ( e 1 ) = e 2 h\left(e_1\right) = e_2 h(e1)=e2
(2) ∀ a ∈ G 1 , h ( a ) ⋅ h ( a − 1 ) = h ( a ∗ a − 1 ) = h ( e 1 ) = e 2 \forall a \in G_1, h\left(a\right)\cdot h\left(a^{-1}\right)=h\left(a*a^{-1}\right) = h\left(e_1\right)=e_2 aG1,h(a)h(a1)=h(aa1)=h(e1)=e2
同理 h ( a − 1 ) ⋅ h ( a ) = e 2 h\left(a^{-1}\right) \cdot h\left(a\right) = e_2 h(a1)h(a)=e2,故 h ( a − 1 ) = h ( a ) − 1 h\left(a^{-1}\right) = h\left(a\right)^{-1} h(a1)=h(a)1
(3) ∀ h ( a ) , h ( b ) ∈ h ( H ) \forall h\left(a\right),h\left(b\right)\in h\left(H\right) h(a),h(b)h(H) a , b ∈ H a,b\in H a,bH,因为 H ≤ G 1 H\le G_1 HG1
所以 a ∗ b − 1 ∈ H a*b^{-1}\in H ab1H
h ( a ) ⋅ h ( b ) − 1 = h ( a ) ⋅ h ( b − 1 ) = h ( a ∗ b − 1 ) ∈ h ( H ) h\left(a\right) \cdot h\left(b\right)^{-1} = h\left(a\right)\cdot h\left(b^{-1}\right) = h\left(a*b^{-1}\right)\in h\left(H\right) h(a)h(b)1=h(a)h(b1)=h(ab1)h(H)
h ( H ) ≤ G 2 h\left(H\right)\le G_2 h(H)G2
(4)
∣ a ∣ \left|a\right| a无线,则 ∀ n ∈ I + \forall n \in \mathbb{I}_+ nI+ a n ≠ e 1 a^n\neq e_1 an=e1
因为 h h h单射,所以 h ( a n ) ≠ h ( e 1 ) h\left(a^n\right)\neq h\left(e_1\right) h(an)=h(e1)
( h ( a ) ) n ≠ e 2 \left(h\left(a\right)\right)^n\neq e_2 (h(a))n=e2,故 ∣ h ( a ) ∣ \left|h\left(a\right)\right| h(a)也无限

∣ a ∣ = n ∈ I + \left|a\right| = n \in \mathbb{I}_+ a=nI+,则 a n = e 1 a^n=e_1 an=e1
于是 ( h ( a ) ) n = h ( a n ) = h ( e 1 ) = e 2 \left(h\left(a\right)\right)^n=h\left(a^n\right)=h\left(e_1\right)=e_2 (h(a))n=h(an)=h(e1)=e2,所以 ∣ h ( a ) ∣ \left|h\left(a\right)\right| h(a)也有限
∣ h ( a ) ∣ = m ≤ n \left|h\left(a\right)\right|=m\le n h(a)=mn,又 h ( a m ) = ( h ( a ) ) m = e 2 = h ( e 1 ) h\left(a^m\right) = \left(h\left(a\right)\right)^m=e_2=h\left(e_1\right) h(am)=(h(a))m=e2=h(e1)
h h h是单射,所以 a m = e 1 a^m=e_1 am=e1,从而 n ≤ m n\le m nm,故 n = m n=m n=m

课后习题

1.设 H H H K K K都是群 G G G的子群。试证: H ∩ K H\cap K HK也是 G G G的子群。 H ∪ K H\cup K HK也一定是 G G G的子群吗?

证明:
G = < A , ∗ > , H = < A 1 , ∗ > , K = < A 2 , ∗ > , H ≤ G , K ≤ G G=\left<A, *\right>, H=\left<A_1,*\right>, K=\left<A_2,*\right>, H\le G, K\le G G=A,,H=A1,,K=A2,,HG,KG

∀ a 1 , a 2 ∈ H ∩ K \forall a_1,a_2 \in H\cap K a1,a2HK,
a 1 , a 2 ∈ H a_1,a_2\in H a1,a2H
a 1 , a 2 ∈ K a_1,a_2\in K a1,a2K

a 1 ∗ a 2 ∈ H a 1 ∗ a 2 ∈ K ⇒ a 1 ∗ a 2 ∈ H ∩ K a_1 * a_2 \in H\\ a_1 * a_2 \in K\\ \Rightarrow a_1 * a_2\in H\cap K a1a2Ha1a2Ka1a2HK
因此 ∗ * A 1 ∩ A 2 A_1\cap A_2 A1A2封闭

H H H的单位与 G G G的单位一样
K K K的单位与 G G G的单位一样
因此 H ∩ K H\cap K HK的单位与 G G G的单位一样

∀ a ∈ H \forall a \in H aH
a ∈ H a\in H aH
a ∈ K a\in K aK
a a a H H H中的逆就是 a a a G G G中的逆
a a a K K K中的逆就是 a a a G G G中的逆
因此 a a a H ∩ K H\cap K HK中的逆就是 a a a G G G中的逆

因此 H ∩ K ≤ G H\cap K \le G HKG

H ∪ K H\cup K HK不一定
G = < I , + > G=\left<\mathbb{I},+\right> G=I,+
H = < { 2 k ∣ k ∈ I } , + > , K = < { 3 k ∣ k ∈ I } , + > H=\left<\left\{2k| k \in \mathbb{I}\right\}, +\right>,K=\left<\left\{3k| k \in \mathbb{I}\right\}, +\right> H={ 2kkI},+,K={ 3kkI},+
+ + +为普通加法运算
H ≤ G , K ≤ G , 2 , 3 ∈ H ∪ K H\le G,K\le G,2,3\in H\cup K HG,KG,2,3HK,但是 2 + 3 = 5 ∉ H ∪ K 2+3=5\not\in H\cup K 2+3=5HK

2.设 H H H K K K都是群 G G G的子群。令 H K = { a b ∣ a ∈ H , b ∈ K } HK=\left\{ab|a\in H,b\in K\right\} HK={ abaH,bK}
试证: H K ≤ G HK\le G HKG当且仅当 H K = K H HK=KH HK=KH

证明:
充分性: H K = K H HK=KH HK=KH
x = h k ( h ∈ H , k ∈ K ) x=hk\left(h\in H, k \in K\right) x=hk(hH,kK)
因此 x ∈ H K x\in HK xHK
因为 h ∈ H , k ∈ K h\in H, k\in K hH,kK
所以 h − 1 ∈ H , k − 1 ∈ K h^{-1}\in H, k^{-1}\in K h1H,k1K

x − 1 = k − 1 h − 1 ∈ K H ⇒ x − 1 ∈ H K x^{-1}=k^{-1}h^{-1}\in KH\Rightarrow x^{-1}\in HK x1=k1h1KHx1HK
因此 x x x H K HK HK中可逆

x = h 1 k 1 , y = h 2 k 2 ( h 1 , h 2 ∈ H , k 1 , k 2 ∈ K ) x=h_1 k_1,y=h_2k_2\left(h_1,h_2\in H, k_1,k_2\in K\right) x=h1k1,y=h2k2(h1,h2H,k1,k2K),
k 1 h 2 = h 2 ′ k 1 ′ ( h 2 ′ ∈ H , k 1 ′ ∈ K ) k_1h_2=h_2^{\prime}k_1^{\prime}\left(h_2^{\prime}\in H, k_1^{\prime}\in K\right) k1h2=h2k1(h2H,k1K)
x y = h 1 k 1 h 2 k 2 = ( h 1 h 2 ′ ) ( k 1 ′ k 2 ) ∈ H K \begin{aligned} xy &=h_1k_1h_2k_2\\ &=\left(h_1h_2^{\prime}\right)\left(k_1^{\prime}k_2\right)\\ &\in HK \end{aligned} xy=h1k1h2k2=(h1h2)(k1k2)HK
H K HK HK封闭可逆, H K ≤ G HK\le G HKG

必要性:
H = H − 1 , H K = ( H K ) − 1 = K − 1 H − 1 = K H H=H^{-1}, HK=(HK)^{-1}=K^{-1}H^{-1}=KH H=H1,HK=(HK)1=K1H1=KH

3.设 < G , ⋅ > \left<G,\cdot\right> G,是群, a ∈ G a\in G aG。令 H = { x ∈ G ∣ a ⋅ x = x ⋅ a } H=\left\{x\in G|a\cdot x=x\cdot a\right\} H={ xGax=xa}
试证: H ≤ G H\le G HG

证明:
单位 e e e
显然 e ∈ H e\in H eH
∀ x , y ∈ H \forall x,y\in H x,yH
a ⋅ x ⋅ y = x ⋅ a ⋅ y = x ⋅ y ⋅ a ⇒ x ⋅ y ∈ H \begin{aligned} a\cdot x \cdot y & =x\cdot a\cdot y=x\cdot y \cdot a\Rightarrow x\cdot y\in H \end{aligned} axy=xay=xyaxyH
因此封闭
a ⋅ x = x ⋅ a x − 1 ⋅ a ⋅ x ⋅ x − 1 = x − 1 ⋅ x ⋅ a ⋅ x − 1 x − 1 ⋅ a = a ⋅ x − 1 \begin{aligned} a\cdot x &= x \cdot a\\ x^{-1}\cdot a \cdot x \cdot x^{-1} &= x^{-1}\cdot x \cdot a\cdot x^{-1}\\ x^{-1}\cdot a &= a\cdot x^{-1} \end{aligned} axx1axx1x1a=xa=x1xax1=ax1
可逆

因此 H ≤ G H\le G HG

4.设 < G , ⋅ > \left<G,\cdot\right> G,是群, H ≤ G , a ∈ G H\le G,a\in G HG,aG。令 a ⋅ H ⋅ a − 1 = { a ⋅ h ⋅ a − 1 ∣ h ∈ H } a\cdot H\cdot a^{-1}=\left\{a\cdot h\cdot a^{-1}|h\in H\right\} aHa1={ aha1hH}
试证: a ⋅ H ⋅ a − 1 ≤ G a\cdot H\cdot a^{-1}\le G aHa1G a ⋅ H ⋅ a − 1 a\cdot H\cdot a^{-1} aHa1称为 H H H共轭子群

证明:
x , y ∈ a ⋅ H ⋅ a − 1 x,y\in a\cdot H\cdot a^{-1} x,yaHa1

a ⋅ x ⋅ a − 1 ⋅ a ⋅ y ⋅ a − 1 = a ⋅ ( x ⋅ y ) ⋅ a − 1 ∈ H a\cdot x\cdot a^{-1}\cdot a \cdot y\cdot a^{-1}=a\cdot\left(x\cdot y\right)\cdot a^{-1}\in H axa1aya1=a(xy)a1H
因此封闭

a ⋅ x ⋅ a − 1 ∈ H ⇒ ( a ⋅ x ⋅ a − 1 ) − 1 ∈ H ⇒ x − 1 ∈ a ⋅ H ⋅ a − 1 a\cdot x\cdot a^{-1}\in H\Rightarrow \left(a\cdot x\cdot a^{-1}\right)^{-1}\in H\Rightarrow x^{-1}\in a\cdot H\cdot a^{-1} axa1H(axa1)1Hx1aHa1
因此 a ⋅ H ⋅ a − 1 ≤ G a\cdot H\cdot a^{-1}\le G aHa1G

5.试证: < Q , + > \left<\mathbb{Q},+\right> Q,+ < Q ∗ , ⋅ > \left<Q^*,\cdot\right> Q,不同构,其中 Q \mathbb{Q} Q是有理数集, Q ∗ = Q − { 0 } \mathbb{Q}^*=\mathbb{Q}-\left\{0\right\} Q=Q{ 0}, + + + ⋅ \cdot 分别是分数的普通加法和乘法

证明:
< Q , + > \left<\mathbb{Q},+\right> Q,+ < Q ∗ , ⋅ > \left<Q^*,\cdot\right> Q,同构
则存在双射 h : Q → Q ∗ h:\mathbb{Q}\to \mathbb{Q}^* h:QQ使得 h h h是同构
存在 a ∈ Q a\in \mathbb{Q} aQ,使得 h ( a ) = − 1 h\left(a\right)=-1 h(a)=1
h ( a 2 ) 2 = h ( a ) = − 1 h\left(\frac{a}{2}\right)^2=h\left(a\right)=-1 h(2a)2=h(a)=1
矛盾

6.设 G G G是交换群, k ∈ I k\in\mathbb{I} kI,作 f : G → G , a ↦ a k f:G\to G,a\mapsto a^k f:GG,aak
证明: f f f G G G的自同态

证明:
x , y ∈ G x,y\in G x,yG
f ( x ⋅ y ) = ( x ⋅ y ) k = x k y k = f ( x ) ⋅ f ( y ) f\left(x\cdot y\right)=\left(x\cdot y\right)^k=x^k y^k = f\left(x\right)\cdot f\left(y\right) f(xy)=(xy)k=xkyk=f(x)f(y)

7.设 G G G是群。作 f : G → G , a ↦ a − 1 f:G\to G,a\mapsto a^{-1} f:GG,aa1
证明: f f f G G G的自同构当且仅当 G G G是交换群

证明:
必要性: f f f G G G的自同构
∀ a , b ∈ G \forall a,b\in G a,bG
f ( a ⋅ b ) = b − 1 ⋅ a − 1 = f ( a ) ⋅ f ( b ) = a − 1 ⋅ b − 1 f\left(a\cdot b\right)=b^{-1}\cdot a^{-1}=f\left(a\right)\cdot f\left(b\right)=a^{-1}\cdot b^{-1} f(ab)=b1a1=f(a)f(b)=a1b1
因此
b − 1 ⋅ a − 1 = a − 1 ⋅ b − 1 ⇒ ( b − 1 ) − 1 ⋅ ( a − 1 ) − 1 = ( a − 1 ) − 1 ⋅ ( b − 1 ) − 1 ⇒ a ⋅ b = b ⋅ a b^{-1}\cdot a^{-1}=a^{-1}\cdot b^{-1}\Rightarrow \left(b^{-1}\right)^{-1}\cdot \left(a^{-1}\right)^{-1}=\left(a^{-1}\right)^{-1}\cdot \left(b^{-1}\right)^{-1}\Rightarrow a\cdot b=b \cdot a b1a1=a1b1(b1)1(a1)1=(a1)1(b1)1ab=ba

充分性:
显然 f f f是双射
∀ a , b ∈ G \forall a,b\in G a,bG
f ( a ⋅ b ) = b − 1 ⋅ a − 1 = f ( a ) ⋅ f ( b ) = a − 1 ⋅ b − 1 f\left(a\cdot b\right)=b^{-1}\cdot a^{-1}=f\left(a\right)\cdot f\left(b\right)=a^{-1}\cdot b^{-1} f(ab)=b1a1=f(a)f(b)=a1b1

8.设 G G G是群, a ∈ G a\in G aG,作 f : G → G , x ↦ a x a − 1 f:G\to G,x \mapsto axa^{-1} f:GG,xaxa1。证明: f f f G G G的自同构

证明:显然 f f f双射
f ( x ) f ( y ) = a x a − 1 a y a − 1 = a ( x y ) a − 1 = f ( x y ) \begin{aligned} f\left(x\right)f\left(y\right)=axa^{-1}aya^{-1}=a\left(xy\right)a^{-1}=f\left(xy\right) \end{aligned} f(x)f(y)=axa1aya1=a(xy)a1=f(xy)
f f f G G G的自同构

9.证明:群 G G G的所有自同构的集合关于函数的合成运算构成群,称为 G G G自同构群,记作 A u t ( G ) Aut\left(G\right) Aut(G)

证明:
显然恒等函数 1 G ∈ A u t ( G ) 1_G\in Aut\left(G\right) 1GAut(G)

f , g ∈ A u t ( G ) f,g\in Aut\left(G\right) f,gAut(G)
f ∘ g ( x ⋅ y ) = f ( g ( x ⋅ y ) ) = f ( g ( x ) ⋅ g ( y ) ) = f ( g ( x ) ) ⋅ f ( g ( y ) ) = f ∘ g ( x ) ⋅ f ∘ g ( y ) \begin{aligned} f\circ g\left(x\cdot y\right)&=f\left(g\left(x\cdot y\right)\right)\\ &=f\left(g\left(x\right)\cdot g\left(y\right)\right)\\ &=f\left(g\left(x\right)\right)\cdot f\left(g\left(y\right)\right)\\ &=f\circ g\left(x\right)\cdot f\circ g\left(y\right) \end{aligned} fg(xy)=f(g(xy))=f(g(x)g(y))=f(g(x))f(g(y))=fg(x)fg(y)
因此 f ∘ g ∈ A u t ( G ) f\circ g \in Aut\left(G\right) fgAut(G)

显然 f − 1 ∈ A u t ( G ) f^{-1}\in Aut\left(G\right) f1Aut(G)
因此 A u t ( G ) Aut\left(G\right) Aut(G)是群

今天的文章 子群和群同态分享到此就结束了,感谢您的阅读。
编程小号
上一篇 2025-01-06 21:33
下一篇 2025-01-06 21:30

相关推荐

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。
如需转载请保留出处:https://bianchenghao.cn/bian-cheng-ji-chu/103151.html