智能对联
自然语言处理(Natural Language Processing, NLP)是人工智能领域中最重要的分支之一。本案例使用深度学习的方法,利用常见的机器翻译模型,构建了一个智能对联生成的微信小程序。通过对该案例的学习,读者能够了解NLP领域的基础理论,包括词嵌入(Word Embedding)、编码解码模型(Encoder-Decoder)、注意力机制(Attention)等重要知识点,并具备应用、实践能力。通过阅读详实的步骤介绍和参考代码,读者也能了解RNN、LSTM、GRU、Transformer等流行算法,以及Tensor2Tensor等模型库的使用,从而在应用场景中将NLP的理论知识转变成相应的实战技能。
该案例面向对象广泛,扩展性强,不但覆盖了NLP的几大主要知识点,还进一步结合了计算机视觉(Computer Vision)中目标检测、图像分割、图像标注等知识点。初学者可通过复现此案例来学习NLP相关的理论知识,在实践中加深对理论的理解、提高动手能力;对于进阶者,可以通过研究优化对联生成模型等方面,对该案例应用做进一步的扩展,从而提高分析、研究能力。
发展历程及实现方法
机器翻译的发展经历了以下几个阶段:
由最初的基于规则的方法,发展到统计机器翻译,再到现在的神经网络机器翻译。
基于规则
基于规则的方法是由人来提供翻译规则,从词语到词语的对应,都由人来提供。由于该方法需要人类语言专家来设计规则,且规则复杂,因此开发周期长,成本高。由于基于规则的方法,通常是字字对应的转化,没有考虑上下文,因此翻译质量通常会由于使用场景的不同而产生较大的差异。
统计机器翻译
在基于统计的机器翻译中,规则是由机器自动从大规模的语料中学习得到的,而非由人主动提供完整的规则。这种方法的成本较低,因为机器可以利用大量数据自动学习对应的规则,而无需人的参与。由于统计机器翻译基于大量的语料库,因此翻译质量易受语料库的多寡影响。
微软亚洲研究院周明老师团队早在十几年前就已经使用基于短语的统计机器学习的方法,实现了电脑自动对联系统,效果非常好,很好的展现了中国经典文化的魅力,收获了非常多的赞誉。在线体验地址是 这里。
神经网络机器翻译
近年来,深度神经网络学习的发展为机器翻译提供了新的思路。通常情况下,神经机器翻译使用编码器-解码器框架。编码阶段将整个源序列编码成一个(或一组)向量,解码阶段通过最大化预测序列概率,从中解码出整个目标序列,完成翻译过程。
编码器、解码器通常使用 RNN、LSTM 来实现,也有的用 CNN 来实现,达到了比较好的性能和结果。
在本次案例中,我们将使用深度学习的方法,实现一个对联自动生成的应用。
当前,常见的深度学习算法有 RNN、 LSTM、GRU、 Transformer。
由于前馈神经网络的输入都是一批静态数据,无法处理对于随着时间变化的连续数据,或者说无法捕捉时间序列的关系,因此科学家提出了循环神经网络(RNN,Recurrent Neural Network),通过连接多个前馈神经网络的隐藏层,从而获取每个相邻时间步之间的联系。在RNN的基础上,科学家又引入了大量优化理论并从此衍生出许多改进算法,如长短期记忆网络(Long Short-Term Memory networks, LSTM)、门控循环单元网络(Gated Recurrent Unit networks, GRU)等。
LSTM主要解决了RNN中容易出现的梯度爆炸和梯度消失的问题,而GRU在LSTM的基础上,做了进一步的简化,但它们始终是基于RNN的算法,十分地消耗计算资源。Transformer算法则基于全新的Attention机制,放弃了循环和卷积,采用了编码器和解码器的结构,在翻译任务上的表现也更优。因此,在这里我们选择使用transformer模型来实现我们的任务。
案例价值
此案例特色显明,生动有趣,可以激发学生们对深度学习的兴趣。在技术层面,此案例使学生对深度学习的时序模型有直观的了解。该案例面向对象广泛,扩展性强。对初学者,可重复案例的过程;对于进阶者,不论在模型选择上,还是在模型推理上,都可以有更多的扩展,可提高学生们的探索研究能力。
核心知识点
- 使用微软认知服务(Cognitive Service)中计算机视觉(computer vision)服务
- NLP 相关知识
- Sequence2Sequence 模型
- 相关算法: RNN,LSTM,GRU,Transformer
- 模型库的使用
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。
如需转载请保留出处:https://bianchenghao.cn/bian-cheng-ji-chu/105222.html