【导数术】8.三角函数

【导数术】8.三角函数原创 导数术 对高中数学导数部分的内容进行了总结

8.三角函数

(1)常见的放缩

x − x 3 6 ≤ sin ⁡ x ≤ x ( x ≥ 0 ) cos ⁡ x ≥ 1 − 1 2 x 2 ( x ∈ R ) \begin{aligned}&x-\frac{x^3}{6} \leq \sin x\leq x(x \geq 0) \\\\ &\cos x\geq1-\frac 1 2 x^2(x\in \R)\\ \\ \end{aligned} x6x3sinxx(x0)cosx121x2(xR)

[证明]:令 u ( x ) = x − sin ⁡ x ( x ≥ 0 ) u(x)=x-\sin x(x\geq0) u(x)=xsinx(x0)

u ′ ( x ) = 1 − cos ⁡ x ≥ 0 , u ( x ) ≥ u ( 0 ) = 0 u'(x)=1-\cos x\geq 0,u(x)\geq u(0)=0 u(x)=1cosx0,u(x)u(0)=0,于是 x ≥ sin ⁡ x ( x ≥ 0 ) x\geq \sin x(x\geq0) xsinx(x0)

考虑到 t ≥ 0 t\geq0 t0 u ( t ) ≥ 0 u(t)\geq 0 u(t)0,于是:
∫ 0 x u ( t ) d t = ∫ 0 x ( t − sin ⁡ t ) d t = [ 1 2 t 2 + cos ⁡ t ] t = x − [ 1 2 t 2 + cos ⁡ t ] t = 0 = 1 2 x 2 + cos ⁡ x − 1 ≥ 0 \begin{aligned} \int_0^xu(t)dt&=\int_0^x(t-\sin t)dt\\ &=[\frac 1 2t^2+\cos t]_{t=x}-[\frac 1 2t^2+\cos t]_{t=0}\\ &=\frac{1}{2}x^2+\cos x-1\geq0 \end{aligned} 0xu(t)dt=0x(tsint)dt=[21t2+cost]t=x[21t2+cost]t=0=21x2+cosx10
于是: cos ⁡ x ≥ 1 − 1 2 x 2 ( x ≥ 0 ) \cos x\geq 1-\frac 1 2x^2(x\geq 0) cosx121x2(x0)

由偶函数的对称性可知 x < 0 x<0 x<0时,也有 cos ⁡ x ≥ 1 − 1 2 x 2 ( x ≥ 0 ) \cos x\geq 1-\frac 1 2x^2(x\geq 0) cosx121x2(x0)

从而: cos ⁡ x ≥ 1 − 1 2 x 2 ( x ∈ R ) \cos x\geq 1-\frac 1 2x^2(x\in \R) cosx121x2(xR)

p ( x ) = cos ⁡ x + 1 2 x 2 − 1 ≥ 0 p(x)=\cos x +\frac 1 2x^2-1\geq0 p(x)=cosx+21x210

同理:
∫ 0 x p ( t ) d t = sin ⁡ x + 1 6 x 3 − x ≥ 0 \int_0^x p(t)dt=\sin x+\frac{1}{6}x^3-x\geq0 0xp(t)dt=sinx+61x3x0
于是:
sin ⁡ x ≥ x − 1 6 x 3 ( x ≥ 0 ) \sin x\geq x-\frac 1 6x^3(x\geq0) sinxx61x3(x0)
证毕。

(2)练习

P r a . 8.1 Pra.8.1 Pra.8.1

已知函数 f ( x ) = sin ⁡ x + x 3 6 − m x . f(x)=\sin x+\frac{x^3}{6}-mx. f(x)=sinx+6x3mx.

(1)若 f ( x ) f(x) f(x) [ 0 , + ∞ ) [0,+\infty) [0,+)上单增,求实数 m m m的取值范围;

(2)若对于 ∀ x ∈ [ 0 , + ∞ ) \forall x\in[0,+\infty) x[0,+),不等式
sin ⁡ x − cos ⁡ x ≤ e a x − 2 \sin x-\cos x \leq e^{ax}-2 sinxcosxeax2
恒成立,求 a a a的取值范围.

  • S o l u t i o n Solution Solution:见指对同构,用到放缩 x − sin ⁡ x ≥ 0 ( x ≥ 0 ) x-\sin x\geq 0(x\geq0) xsinx0(x0)
P r a . 8.2 Pra.8.2 Pra.8.2[2020年全国II卷]

已知函数 f ( x ) = sin ⁡ 2 x sin ⁡ 2 x f(x)=\sin^2x\sin2x f(x)=sin2xsin2x.

(1)讨论 f ( x ) f(x) f(x)在区间 ( 0 , π ) (0,\pi) (0,π)的单调性;

(2)证明: ∣ f ( x ) ∣ ≤ 3 3 8 \lvert f(x)\rvert\leq \frac{3\sqrt3}{8} f(x)∣833

(3)设 n ∈ N ∗ n\in N^* nN,证明:
sin ⁡ 2 x ⋅ sin ⁡ 2 2 x ⋅ sin ⁡ 2 4 x . . . ⋅ sin ⁡ 2 2 n x ≤ 3 n 4 n sin ⁡ 2 x ⋅ sin ⁡ 2 2 x ⋅ sin ⁡ 2 4 x . . . ⋅ sin ⁡ 2 2 n x ≤ 3 n 4 n \sin^2x\cdot \sin^22x\cdot \sin^24x...\cdot \sin^22^nx\leq \frac{3^n}{4^n}\sin^2x\cdot \sin^22x\cdot \sin^24x...\cdot \sin^22^nx\leq \frac{3^n}{4^n} sin2xsin22xsin24x...sin22nx4n3nsin2xsin22xsin24x...sin22nx4n3n

编程小号
上一篇 2025-01-08 16:57
下一篇 2025-01-08 16:46

相关推荐

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。
如需转载请保留出处:https://bianchenghao.cn/bian-cheng-ji-chu/105342.html