爬虫相关

爬虫相关性能相关在编写爬虫时 性能的消耗主要在 IO 请求中 当单进程单线程模式下请求 URL 时必然会引起等待 从而使得请求整体变慢

性能相关

在编写爬虫时,性能的消耗主要在IO请求中,当单进程单线程模式下请求URL时必然会引起等待,从而使得请求整体变慢。

 1 import requests
 2 
 3 def fetch_async(url):
 4     response = requests.get(url)
 5     return response
 6 
 7 
 8 url_list = ['http://www.github.com', 'http://www.bing.com']
 9 
10 for url in url_list:
11     fetch_async(url)
1.同步执行
 1 from concurrent.futures import ThreadPoolExecutor
 2 import requests
 3 
 4 
 5 def fetch_async(url):
 6     response = requests.get(url)
 7     return response
 8 
 9 
10 url_list = ['http://www.github.com', 'http://www.bing.com']
11 pool = ThreadPoolExecutor(5)
12 for url in url_list:
13     pool.submit(fetch_async, url)
14 pool.shutdown(wait=True)
2.多线程执行
 1 from concurrent.futures import ThreadPoolExecutor
 2 import requests
 3 
 4 def fetch_async(url):
 5     response = requests.get(url)
 6     return response
 7 
 8 
 9 def callback(future):
10     print(future.result())
11 
12 
13 url_list = ['http://www.github.com', 'http://www.bing.com']
14 pool = ThreadPoolExecutor(5)
15 for url in url_list:
16     v = pool.submit(fetch_async, url)
17     v.add_done_callback(callback)
18 pool.shutdown(wait=True)
2.多线程+回调函数执行
 1 from concurrent.futures import ProcessPoolExecutor
 2 import requests
 3 
 4 def fetch_async(url):
 5     response = requests.get(url)
 6     return response
 7 
 8 
 9 url_list = ['http://www.github.com', 'http://www.bing.com']
10 pool = ProcessPoolExecutor(5)
11 for url in url_list:
12     pool.submit(fetch_async, url)
13 pool.shutdown(wait=True)
3.多进程执行
 1 from concurrent.futures import ProcessPoolExecutor
 2 import requests
 3 
 4 
 5 def fetch_async(url):
 6     response = requests.get(url)
 7     return response
 8 
 9 
10 def callback(future):
11     print(future.result())
12 
13 
14 url_list = ['http://www.github.com', 'http://www.bing.com']
15 pool = ProcessPoolExecutor(5)
16 for url in url_list:
17     v = pool.submit(fetch_async, url)
18     v.add_done_callback(callback)
19 pool.shutdown(wait=True)
3.多进程+回调函数

通过上述代码均可以完成对请求性能的提高,对于多线程和多进行的缺点是在IO阻塞时会造成了线程和进程的浪费,所以异步IO回事首选:

 1 import asyncio
 2 
 3 
 4 @asyncio.coroutine
 5 def func1():
 6     print('before...func1......')
 7     yield from asyncio.sleep(5)
 8     print('end...func1......')
 9 
10 
11 tasks = [func1(), func1()]
12 
13 loop = asyncio.get_event_loop()
14 loop.run_until_complete(asyncio.gather(*tasks))
15 loop.close()
1.asyncio实例1
 1 import asyncio
 2 
 3 
 4 @asyncio.coroutine
 5 def fetch_async(host, url='/'):
 6     print(host, url)
 7     reader, writer = yield from asyncio.open_connection(host, 80)
 8 
 9     request_header_content = """GET %s HTTP/1.0\r\nHost: %s\r\n\r\n""" % (url, host,)
10     request_header_content = bytes(request_header_content, encoding='utf-8')
11 
12     writer.write(request_header_content)
13     yield from writer.drain()
14     text = yield from reader.read()
15     print(host, url, text)
16     writer.close()
17 
18 tasks = [
19     fetch_async('www.cnblogs.com', '/wupeiqi/'),
20     fetch_async('dig.chouti.com', '/pic/show?nid=4073644713430508&lid=10273091')
21 ]
22 
23 loop = asyncio.get_event_loop()
24 results = loop.run_until_complete(asyncio.gather(*tasks))
25 loop.close()
1.asyncio示例2
 1 import aiohttp
 2 import asyncio
 3 
 4 
 5 @asyncio.coroutine
 6 def fetch_async(url):
 7     print(url)
 8     response = yield from aiohttp.request('GET', url)
 9     # data = yield from response.read()
10     # print(url, data)
11     print(url, response)
12     response.close()
13 
14 
15 tasks = [fetch_async('http://www.google.com/'), fetch_async('http://www.chouti.com/')]
16 
17 event_loop = asyncio.get_event_loop()
18 results = event_loop.run_until_complete(asyncio.gather(*tasks))
19 event_loop.close()
2.asyncio + aiohttp
 1 import asyncio
 2 import requests
 3 
 4 
 5 @asyncio.coroutine
 6 def fetch_async(func, *args):
 7     loop = asyncio.get_event_loop()
 8     future = loop.run_in_executor(None, func, *args)
 9     response = yield from future
10     print(response.url, response.content)
11 
12 
13 tasks = [
14     fetch_async(requests.get, 'http://www.cnblogs.com/wupeiqi/'),
15     fetch_async(requests.get, 'http://dig.chouti.com/pic/show?nid=4073644713430508&lid=10273091')
16 ]
17 
18 loop = asyncio.get_event_loop()
19 results = loop.run_until_complete(asyncio.gather(*tasks))
20 loop.close()
3.asyncio + requests
 1 import gevent
 2 
 3 import requests
 4 from gevent import monkey
 5 
 6 monkey.patch_all()
 7 
 8 
 9 def fetch_async(method, url, req_kwargs):
10     print(method, url, req_kwargs)
11     response = requests.request(method=method, url=url, **req_kwargs)
12     print(response.url, response.content)
13 
14 # ##### 发送请求 #####
15 gevent.joinall([
16     gevent.spawn(fetch_async, method='get', url='https://www.python.org/', req_kwargs={}),
17     gevent.spawn(fetch_async, method='get', url='https://www.yahoo.com/', req_kwargs={}),
18     gevent.spawn(fetch_async, method='get', url='https://github.com/', req_kwargs={}),
19 ])
20 
21 # ##### 发送请求(协程池控制最大协程数量) #####
22 # from gevent.pool import Pool
23 # pool = Pool(None)
24 # gevent.joinall([
25 #     pool.spawn(fetch_async, method='get', url='https://www.python.org/', req_kwargs={}),
26 #     pool.spawn(fetch_async, method='get', url='https://www.yahoo.com/', req_kwargs={}),
27 #     pool.spawn(fetch_async, method='get', url='https://www.github.com/', req_kwargs={}),
28 # ])
4.gevent + requests
 1 import grequests
 2 
 3 
 4 request_list = [
 5     grequests.get('http://httpbin.org/delay/1', timeout=0.001),
 6     grequests.get('http://fakedomain/'),
 7     grequests.get('http://httpbin.org/status/500')
 8 ]
 9 
10 
11 # ##### 执行并获取响应列表 #####
12 # response_list = grequests.map(request_list)
13 # print(response_list)
14 
15 
16 # ##### 执行并获取响应列表(处理异常) #####
17 # def exception_handler(request, exception):
18 # print(request,exception)
19 #     print("Request failed")
20 
21 # response_list = grequests.map(request_list, exception_handler=exception_handler)
22 # print(response_list)
5.grequests
 1 from twisted.web.client import getPage
 2 from twisted.internet import reactor
 3 
 4 REV_COUNTER = 0
 5 REQ_COUNTER = 0
 6 
 7 def callback(contents):
 8     print(contents,)
 9 
10     global REV_COUNTER
11     REV_COUNTER += 1
12     if REV_COUNTER == REQ_COUNTER:
13         reactor.stop()
14 
15 
16 url_list = ['http://www.bing.com', 'http://www.baidu.com', ]
17 REQ_COUNTER = len(url_list)
18 for url in url_list:
19     deferred = getPage(bytes(url, encoding='utf8'))
20     deferred.addCallback(callback)
21 reactor.run()
6.Twisted示例1
 1 from twisted.web.client import getPage
 2 from twisted.internet import reactor
 3 
 4 
 5 class TwistedRequest(object):
 6     def __init__(self):
 7         self.__req_counter = 0
 8         self.__rev_counter = 0
 9 
10     def __execute(self, content, url, callback):
11         if callback:
12             callback(url, content)
13         self.__rev_counter += 1
14         if self.__rev_counter == self.__req_counter:
15             reactor.stop()
16 
17     def fetch_url(self, url_callback_list):
18 
19         self.__req_counter = len(url_callback_list)
20 
21         for item in url_callback_list:
22             url = item['url']
23             success_callback = item['success_callback']
24             error_callback = item['error_callback']
25 
26             deferred = getPage(bytes(url, encoding='utf8'))
27             deferred.addCallback(self.__execute, url, success_callback)
28             deferred.addErrback(self.__execute, url, error_callback)
29 
30         reactor.run()
31 
32 
33 def callback(url, content):
34     print(url, content)
35 
36 
37 def error(url, content):
38     print(url, content)
39 
40 
41 obj = TwistedRequest()
42 obj.fetch_url([
43     {
    'url': 'http://www.baidu.com', 'success_callback': callback, 'error_callback': error},
44     {
    'url': 'http://www.google.com', 'success_callback': callback, 'error_callback': error},
45 ])
6.Twisted示例2
 1 from tornado.httpclient import AsyncHTTPClient
 2 from tornado.httpclient import HTTPRequest
 3 from tornado import ioloop
 4 
 5 
 6 def handle_response(response):
 7     if response.error:
 8         print("Error:", response.error)
 9     else:
10         print(response.body)
11         # 方法同twisted
12         # ioloop.IOLoop.current().stop()
13 
14 
15 def func():
16     url_list = [
17         'http://www.google.com',
18         'http://127.0.0.1:8000/test2/',
19     ]
20     for url in url_list:
21         print(url)
22         http_client = AsyncHTTPClient()
23         http_client.fetch(HTTPRequest(url), handle_response)
24 
25 
26 ioloop.IOLoop.current().add_callback(func)
27 ioloop.IOLoop.current().start()
7.tornado

以上均是Python内置以及第三方模块提供异步IO请求模块,使用简便大大提高效率,而对于异步IO请求的本质则是【非阻塞Socket】+【IO多路复用】:

  1 import select
  2 import socket
  3 import time
  4 
  5 
  6 class AsyncTimeoutException(TimeoutError):
  7     """
  8     请求超时异常类
  9     """
 10 
 11     def __init__(self, msg):
 12         self.msg = msg
 13         super(AsyncTimeoutException, self).__init__(msg)
 14 
 15 
 16 class HttpContext(object):
 17     """封装请求和相应的基本数据"""
 18 
 19     def __init__(self, sock, host, port, method, url, data, callback, timeout=5):
 20         """
 21         sock: 请求的客户端socket对象
 22         host: 请求的主机名
 23         port: 请求的端口
 24         port: 请求的端口
 25         method: 请求方式
 26         url: 请求的URL
 27         data: 请求时请求体中的数据
 28         callback: 请求完成后的回调函数
 29         timeout: 请求的超时时间
 30         """
 31         self.sock = sock
 32         self.callback = callback
 33         self.host = host
 34         self.port = port
 35         self.method = method
 36         self.url = url
 37         self.data = data
 38 
 39         self.timeout = timeout
 40 
 41         self.__start_time = time.time()
 42         self.__buffer = []
 43 
 44     def is_timeout(self):
 45         """当前请求是否已经超时"""
 46         current_time = time.time()
 47         if (self.__start_time + self.timeout) < current_time:
 48             return True
 49 
 50     def fileno(self):
 51         """请求sockect对象的文件描述符,用于select监听"""
 52         return self.sock.fileno()
 53 
 54     def write(self, data):
 55         """在buffer中写入响应内容"""
 56         self.__buffer.append(data)
 57 
 58     def finish(self, exc=None):
 59         """在buffer中写入响应内容完成,执行请求的回调函数"""
 60         if not exc:
 61             response = b''.join(self.__buffer)
 62             self.callback(self, response, exc)
 63         else:
 64             self.callback(self, None, exc)
 65 
 66     def send_request_data(self):
 67         content = """%s %s HTTP/1.0\r\nHost: %s\r\n\r\n%s""" % (
 68             self.method.upper(), self.url, self.host, self.data,)
 69 
 70         return content.encode(encoding='utf8')
 71 
 72 
 73 class AsyncRequest(object):
 74     def __init__(self):
 75         self.fds = []
 76         self.connections = []
 77 
 78     def add_request(self, host, port, method, url, data, callback, timeout):
 79         """创建一个要请求"""
 80         client = socket.socket()
 81         client.setblocking(False)
 82         try:
 83             client.connect((host, port))
 84         except BlockingIOError as e:
 85             pass
 86             # print('已经向远程发送连接的请求')
 87         req = HttpContext(client, host, port, method, url, data, callback, timeout)
 88         self.connections.append(req)
 89         self.fds.append(req)
 90 
 91     def check_conn_timeout(self):
 92         """检查所有的请求,是否有已经连接超时,如果有则终止"""
 93         timeout_list = []
 94         for context in self.connections:
 95             if context.is_timeout():
 96                 timeout_list.append(context)
 97         for context in timeout_list:
 98             context.finish(AsyncTimeoutException('请求超时'))
 99             self.fds.remove(context)
100             self.connections.remove(context)
101 
102     def running(self):
103         """事件循环,用于检测请求的socket是否已经就绪,从而执行相关操作"""
104         while True:
105             r, w, e = select.select(self.fds, self.connections, self.fds, 0.05)
106 
107             if not self.fds:
108                 return
109 
110             for context in r:
111                 sock = context.sock
112                 while True:
113                     try:
114                         data = sock.recv(8096)
115                         if not data:
116                             self.fds.remove(context)
117                             context.finish()
118                             break
119                         else:
120                             context.write(data)
121                     except BlockingIOError as e:
122                         break
123                     except TimeoutError as e:
124                         self.fds.remove(context)
125                         self.connections.remove(context)
126                         context.finish(e)
127                         break
128 
129             for context in w:
130                 # 已经连接成功远程服务器,开始向远程发送请求数据
131                 if context in self.fds:
132                     data = context.send_request_data()
133                     context.sock.sendall(data)
134                     self.connections.remove(context)
135 
136             self.check_conn_timeout()
137 
138 
139 if __name__ == '__main__':
140     def callback_func(context, response, ex):
141         """
142         :param context: HttpContext对象,内部封装了请求相关信息
143         :param response: 请求响应内容
144         :param ex: 是否出现异常(如果有异常则值为异常对象;否则值为None)
145         :return:
146         """
147         print(context, response, ex)
148 
149     obj = AsyncRequest()
150     url_list = [
151         {
    'host': 'www.google.com', 'port': 80, 'method': 'GET', 'url': '/', 'data': '', 'timeout': 5,
152          'callback': callback_func},
153         {
    'host': 'www.baidu.com', 'port': 80, 'method': 'GET', 'url': '/', 'data': '', 'timeout': 5,
154          'callback': callback_func},
155         {
    'host': 'www.bing.com', 'port': 80, 'method': 'GET', 'url': '/', 'data': '', 'timeout': 5,
156          'callback': callback_func},
157     ]
158     for item in url_list:
159         print(item)
160         obj.add_request(**item)
161 
162     obj.running()
最牛逼的异步IO模块

Scrapy

Scrapy是一个为了爬取网站数据,提取结构性数据而编写的应用框架。 其可以应用在数据挖掘,信息处理或存储历史数据等一系列的程序中。
其最初是为了页面抓取 (更确切来说, 网络抓取 )所设计的, 也可以应用在获取API所返回的数据(例如 Amazon Associates Web Services ) 或者通用的网络爬虫。Scrapy用途广泛,可以用于数据挖掘、监测和自动化测试。

Scrapy 使用了 Twisted异步网络库来处理网络通讯。整体架构大致如下:

 

Scrapy主要包括了以下组件:

  • 引擎(Scrapy)
    用来处理整个系统的数据流处理, 触发事务(框架核心)
  • 调度器(Scheduler)
    用来接受引擎发过来的请求, 压入队列中, 并在引擎再次请求的时候返回. 可以想像成一个URL(抓取网页的网址或者说是链接)的优先队列, 由它来决定下一个要抓取的网址是什么, 同时去除重复的网址
  • 下载器(Downloader)
    用于下载网页内容, 并将网页内容返回给蜘蛛(Scrapy下载器是建立在twisted这个高效的异步模型上的)
  • 爬虫(Spiders)
    爬虫是主要干活的, 用于从特定的网页中提取自己需要的信息, 即所谓的实体(Item)。用户也可以从中提取出链接,让Scrapy继续抓取下一个页面
  • 项目管道(Pipeline)
    负责处理爬虫从网页中抽取的实体,主要的功能是持久化实体、验证实体的有效性、清除不需要的信息。当页面被爬虫解析后,将被发送到项目管道,并经过几个特定的次序处理数据。
  • 下载器中间件(Downloader Middlewares)
    位于Scrapy引擎和下载器之间的框架,主要是处理Scrapy引擎与下载器之间的请求及响应。
  • 爬虫中间件(Spider Middlewares)
    介于Scrapy引擎和爬虫之间的框架,主要工作是处理蜘蛛的响应输入和请求输出。
  • 调度中间件(Scheduler Middewares)
    介于Scrapy引擎和调度之间的中间件,从Scrapy引擎发送到调度的请求和响应。

Scrapy运行流程大概如下:

  1. 引擎从调度器中取出一个链接(URL)用于接下来的抓取
  2. 引擎把URL封装成一个请求(Request)传给下载器
  3. 下载器把资源下载下来,并封装成应答包(Response)
  4. 爬虫解析Response
  5. 解析出实体(Item),则交给实体管道进行进一步的处理
  6. 解析出的是链接(URL),则把URL交给调度器等待抓取

一、安装

Linux
      pip3 install scrapy
 
 
Windows
      a. pip3 install wheel
      b. 下载twisted http://www.lfd.uci.edu/~gohlke/pythonlibs/#twisted
      c. 进入下载目录,执行 pip3 install Twisted‑17.1.0‑cp35‑cp35m‑win_amd64.whl
      d. pip3 install scrapy
      e. 下载并安装pywin32:https://sourceforge.net/projects/pywin32/files/
    f. 下载安装 OpenSSL: 下载地址:https://pypi.python.org/pypi/pyOpenSSL#downloads
      安装方式同安装twisted

 

二、基本使用

1. 基本命令

1. scrapy startproject 项目名称
   - 在当前目录中创建中创建一个项目文件(类似于Django)
 
2. scrapy genspider [-t template] <name> <domain>
   - 创建爬虫应用
   如:
      scrapy gensipider -t basic oldboy oldboy.com
      scrapy gensipider -t xmlfeed autohome autohome.com.cn
   PS:
      查看所有命令:scrapy gensipider -l
      查看模板命令:scrapy gensipider -d 模板名称
 
3. scrapy list
   - 展示爬虫应用列表
 
4. scrapy crawl 爬虫应用名称
   - 运行单独爬虫应用

2.项目结构以及爬虫应用简介

project_name/
   scrapy.cfg
   project_name/
       __init__.py
       items.py
       pipelines.py
       settings.py
       spiders/
           __init__.py
           爬虫1.py
           爬虫2.py
           爬虫3.py

文件说明:

  • scrapy.cfg  项目的主配置信息。(真正爬虫相关的配置信息在settings.py文件中)
  • items.py    设置数据存储模板,用于结构化数据,如:Django的Model
  • pipelines    数据处理行为,如:一般结构化的数据持久化
  • settings.py 配置文件,如:递归的层数、并发数,延迟下载等
  • spiders      爬虫目录,如:创建文件,编写爬虫规则

注意:一般创建爬虫文件时,以网站域名命名;在执行的时候会先访问一个robots.txt的文件(防爬), 这个可以通过将配置文件中的ROBOTSTXT_OBEY设置为False来规避。

 1 import scrapy
 2  
 3 class XiaoHuarSpider(scrapy.spiders.Spider):
 4     name = "xiaohuar"                            # 爬虫名称 *****
 5     allowed_domains = ["xiaohuar.com"]  # 允许的域名
 6     start_urls = [
 7         "http://www.xiaohuar.com/hua/",   # 其实URL
 8     ]
 9  
10     def parse(self, response):
11         # 访问起始URL并获取结果后的回调函数
爬虫1.py

3. 小试牛刀

import scrapy
from scrapy.selector import HtmlXPathSelector
from scrapy.http.request import Request
 
 
class DigSpider(scrapy.Spider):
    # 爬虫应用的名称,通过此名称启动爬虫命令
    name = "dig"
 
    # 允许的域名
    allowed_domains = ["chouti.com"]
 
    # 起始URL
    start_urls = [
        'http://dig.chouti.com/',
    ]
 
    has_request_set = {}
 
    def parse(self, response):
        print(response.url)
 
        hxs = HtmlXPathSelector(response)
        page_list = hxs.select('//div[@id="dig_lcpage"]//a[re:test(@href, "/all/hot/recent/\d+")]/@href').extract()
        for page in page_list:
            page_url = 'http://dig.chouti.com%s' % page
            key = self.md5(page_url)
            if key in self.has_request_set:
                pass
            else:
                self.has_request_set[key] = page_url
                obj = Request(url=page_url, method='GET', callback=self.parse)
                yield obj
 
    @staticmethod
    def md5(val):
        import hashlib
        ha = hashlib.md5()
        ha.update(bytes(val, encoding='utf-8'))
        key = ha.hexdigest()
        return key

执行此爬虫文件,则在终端进入项目目录执行如下命令:

1 scrapy crawl dig --nolog

对于上述代码重要之处在于:

  • Request是一个封装用户请求的类,在回调函数中yield该对象表示继续访问
  • HtmlXpathSelector用于结构化HTML代码并提供选择器功能

4. 选择器

#!/usr/bin/env python
# -*- coding:utf-8 -*-
from scrapy.selector import Selector, HtmlXPathSelector
from scrapy.http import HtmlResponse
html = """<!DOCTYPE html>
<html>
    <head lang="en">
        <meta charset="UTF-8">
        <title></title>
    </head>
    <body>
        <ul>
            <li class="item-"><a id='i1' href="link.html">first item</a></li>
            <li class="item-0"><a id='i2' href="llink.html">first item</a></li>
            <li class="item-1"><a href="llink2.html">second item<span>vv</span></a></li>
        </ul>
        <div><a href="llink2.html">second item</a></div>
    </body>
</html>
"""
response = HtmlResponse(url='http://example.com', body=html,encoding='utf-8')
# hxs = HtmlXPathSelector(response)
# print(hxs)
# hxs = Selector(response=response).xpath('//a')
# print(hxs)
# hxs = Selector(response=response).xpath('//a[2]')
# print(hxs)
# hxs = Selector(response=response).xpath('//a[@id]')
# print(hxs)
# hxs = Selector(response=response).xpath('//a[@id="i1"]')
# print(hxs)
# hxs = Selector(response=response).xpath('//a[@href="link.html"][@id="i1"]')
# print(hxs)
# hxs = Selector(response=response).xpath('//a[contains(@href, "link")]')
# print(hxs)
# hxs = Selector(response=response).xpath('//a[starts-with(@href, "link")]')
# print(hxs)
# hxs = Selector(response=response).xpath('//a[re:test(@id, "i\d+")]')
# print(hxs)
# hxs = Selector(response=response).xpath('//a[re:test(@id, "i\d+")]/text()').extract()
# print(hxs)
# hxs = Selector(response=response).xpath('//a[re:test(@id, "i\d+")]/@href').extract()
# print(hxs)
# hxs = Selector(response=response).xpath('/html/body/ul/li/a/@href').extract()
# print(hxs)
# hxs = Selector(response=response).xpath('//body/ul/li/a/@href').extract_first()
# print(hxs)
 
# ul_list = Selector(response=response).xpath('//body/ul/li')
# for item in ul_list:
#     v = item.xpath('./a/span')
#     # 或
#     # v = item.xpath('a/span')
#     # 或
#     # v = item.xpath('*/a/span')
#     print(v)
 1 import scrapy
 2 from scrapy.selector import HtmlXPathSelector
 3 from scrapy.http.request import Request
 4 from scrapy.http.cookies import CookieJar
 5 from scrapy import FormRequest
 6 
 7 
 8 class ChouTiSpider(scrapy.Spider):
 9     # 爬虫应用的名称,通过此名称启动爬虫命令
10     name = "chouti"
11     # 允许的域名
12     allowed_domains = ["chouti.com"]
13 
14     cookie_dict = {}
15     has_request_set = {}
16 
17     def start_requests(self):
18         url = 'http://dig.chouti.com/'
19         # return [Request(url=url, callback=self.login)]
20         yield Request(url=url, callback=self.login)
21 
22     def login(self, response):
23         cookie_jar = CookieJar()
24         cookie_jar.extract_cookies(response, response.request)
25         for k, v in cookie_jar._cookies.items():
26             for i, j in v.items():
27                 for m, n in j.items():
28                     self.cookie_dict[m] = n.value
29 
30         req = Request(
31             url='http://dig.chouti.com/login',
32             method='POST',
33             headers={
    'Content-Type': 'application/x-www-form-urlencoded; charset=UTF-8'},
34             body='phone=8615131255089&password=pppppppp&oneMonth=1',
35             cookies=self.cookie_dict,
36             callback=self.check_login
37         )
38         yield req
39 
40     def check_login(self, response):
41         req = Request(
42             url='http://dig.chouti.com/',
43             method='GET',
44             callback=self.show,
45             cookies=self.cookie_dict,
46             dont_filter=True
47         )
48         yield req
49 
50     def show(self, response):
51         # print(response)
52         hxs = HtmlXPathSelector(response)
53         news_list = hxs.select('//div[@id="content-list"]/div[@class="item"]')
54         for new in news_list:
55             # temp = new.xpath('div/div[@class="part2"]/@share-linkid').extract()
56             link_id = new.xpath('*/div[@class="part2"]/@share-linkid').extract_first()
57             yield Request(
58                 url='http://dig.chouti.com/link/vote?linksId=%s' %(link_id,),
59                 method='POST',
60                 cookies=self.cookie_dict,
61                 callback=self.do_favor
62             )
63 
64         page_list = hxs.select('//div[@id="dig_lcpage"]//a[re:test(@href, "/all/hot/recent/\d+")]/@href').extract()
65         for page in page_list:
66 
67             page_url = 'http://dig.chouti.com%s' % page
68             import hashlib
69             hash = hashlib.md5()
70             hash.update(bytes(page_url,encoding='utf-8'))
71             key = hash.hexdigest()
72             if key in self.has_request_set:
73                 pass
74             else:
75                 self.has_request_set[key] = page_url
76                 yield Request(
77                     url=page_url,
78                     method='GET',
79                     callback=self.show
80                 )
81 
82     def do_favor(self, response):
83         print(response.text)
示例:自动登陆抽屉并点赞

注意:settings.py中设置DEPTH_LIMIT = 1来指定“递归”的层数。

5. 格式化处理

上述实例只是简单的处理,所以在parse方法中直接处理。如果对于想要获取更多的数据处理,则可以利用Scrapy的items将数据格式化,然后统一交由pipelines来处理。

 1 import scrapy
 2 from scrapy.selector import HtmlXPathSelector
 3 from scrapy.http.request import Request
 4 from scrapy.http.cookies import CookieJar
 5 from scrapy import FormRequest
 6 
 7 
 8 class XiaoHuarSpider(scrapy.Spider):
 9     # 爬虫应用的名称,通过此名称启动爬虫命令
10     name = "xiaohuar"
11     # 允许的域名
12     allowed_domains = ["xiaohuar.com"]
13 
14     start_urls = [
15         "http://www.xiaohuar.com/list-1-1.html",
16     ]
17     # custom_settings = {
     
18     #     'ITEM_PIPELINES':{
     
19     #         'spider1.pipelines.JsonPipeline': 100
20     #     }
21     # }
22     has_request_set = {}
23 
24     def parse(self, response):
25         # 分析页面
26         # 找到页面中符合规则的内容(校花图片),保存
27         # 找到所有的a标签,再访问其他a标签,一层一层的搞下去
28 
29         hxs = HtmlXPathSelector(response)
30 
31         items = hxs.select('//div[@class="item_list infinite_scroll"]/div')
32         for item in items:
33             src = item.select('.//div[@class="img"]/a/img/@src').extract_first()
34             name = item.select('.//div[@class="img"]/span/text()').extract_first()
35             school = item.select('.//div[@class="img"]/div[@class="btns"]/a/text()').extract_first()
36             url = "http://www.xiaohuar.com%s" % src
37             from ..items import XiaoHuarItem
38             obj = XiaoHuarItem(name=name, school=school, url=url)
39             yield obj
40 
41         urls = hxs.select('//a[re:test(@href, "http://www.xiaohuar.com/list-1-\d+.html")]/@href')
42         for url in urls:
43             key = self.md5(url)
44             if key in self.has_request_set:
45                 pass
46             else:
47                 self.has_request_set[key] = url
48                 req = Request(url=url,method='GET',callback=self.parse)
49                 yield req
50 
51     @staticmethod
52     def md5(val):
53         import hashlib
54         ha = hashlib.md5()
55         ha.update(bytes(val, encoding='utf-8'))
56         key = ha.hexdigest()
57         return key
spiders/xiahuar.py
1 import scrapy
2 
3 
4 class XiaoHuarItem(scrapy.Item):
5     name = scrapy.Field()
6     school = scrapy.Field()
7     url = scrapy.Field()
items
 1 import json
 2 import os
 3 import requests
 4 
 5 
 6 class JsonPipeline(object):
 7     def __init__(self):
 8         self.file = open('xiaohua.txt', 'w')
 9 
10     def process_item(self, item, spider):
11         v = json.dumps(dict(item), ensure_ascii=False)
12         self.file.write(v)
13         self.file.write('\n')
14         self.file.flush()
15         return item
16 
17 
18 class FilePipeline(object):
19     def __init__(self):
20         if not os.path.exists('imgs'):
21             os.makedirs('imgs')
22 
23     def process_item(self, item, spider):
24         response = requests.get(item['url'], stream=True)
25         file_name = '%s_%s.jpg' % (item['name'], item['school'])
26         with open(os.path.join('imgs', file_name), mode='wb') as f:
27             f.write(response.content)
28         return item
pipelines
1 ITEM_PIPELINES = {
2    'spider1.pipelines.JsonPipeline': 100,
3    'spider1.pipelines.FilePipeline': 300,
4 }
5 # 每行后面的整型值,确定了他们运行的顺序,item按数字从低到高的顺序,通过pipeline,通常将这些数字定义在0-1000范围内。
settings

6.中间件

 1 class CustomSpiderMiddleware(object):
 2     # Not all methods need to be defined. If a method is not defined,
 3     # scrapy acts as if the spider middleware does not modify the
 4     # passed objects.
 5 
 6     def process_spider_input(self, response, spider):
 7         # Called for each response that goes through the spider
 8         # middleware and into the spider.
 9 
10         # Should return None or raise an exception.
11         print('process_spider_input', len(response.text))
12         return None
13 
14     def process_spider_output(self, response, result, spider):
15         # Called with the results returned from the Spider, after
16         # it has processed the response.
17         print('process_spider_output', len(response.text))
18         # Must return an iterable of Request, dict or Item objects.
19         for i in result:
20             yield i
21 
22     def process_spider_exception(self, response, exception, spider):
23         # Called when a spider or process_spider_input() method
24         # (from other spider middleware) raises an exception.
25 
26         # Should return either None or an iterable of Response, dict
27         # or Item objects.
28         print('process_spider_exception')
29         pass
30 
31     def process_start_requests(self, start_requests, spider):
32         # Called with the start requests of the spider, and works
33         # similarly to the process_spider_output() method, except
34         # that it doesn’t have a response associated.
35 
36         # Must return only requests (not items).
37         print('process_start_requests')
38         for r in start_requests:
39             yield r
40 
41     def spider_opened(self, spider):
42         spider.logger.info('Spider opened: %s' % spider.name)
43 
44 
45 class CustomDownloaderMiddleware(object):
46     def process_request(self, request, spider):
47         return None
48 
49     def process_response(self, request, response, spider):
50         return response
51 
52     def process_exception(self, request, exception, spider):
53         return None
middlewares.py
# settings.py
 
DOWNLOADER_MIDDLEWARES = {
    'spider1.middlewares.CustomDownloaderMiddleware': 543,
}
SPIDER_MIDDLEWARES = {
    'spider1.middlewares.CustomSpiderMiddleware': 543,
}

7. 自定制命令

  • 在spiders同级创建任意目录,如:commands
  • 在其中创建 crawlall.py 文件 (此处文件名就是自定义的命令)
 1 from scrapy.commands import ScrapyCommand
 2     from scrapy.utils.project import get_project_settings
 3 
 4 
 5     class Command(ScrapyCommand):
 6 
 7         requires_project = True
 8 
 9         def syntax(self):
10             return '[options]'
11 
12         def short_desc(self):
13             return 'Runs all of the spiders'
14 
15         def run(self, args, opts):
16             spider_list = self.crawler_process.spiders.list()
17             for name in spider_list:
18                 self.crawler_process.crawl(name, **opts.__dict__)
19             self.crawler_process.start()
crawlall.py
  • 在settings.py 中添加配置 COMMANDS_MODULE = '项目名称.目录名称'
  • 在项目目录执行命令:scrapy crawlall 

8.概念补充

线程:线程是计算机工作中的最小单元,在IO密集型的程序中适合使用,但是也不太好,如果每个线程又是IO请求的话,会造成浪费,使用协程更好 

进程:默认有主线程,可以有多个线程,共享这个进程的内部资源。计算密集型的程序适合使用进程

协程:使用一个线程去完成多个任务,也叫微线程

GIL:Python特有的全局解释器锁,相当于在进程中给所有线程加锁,保证同一时间只有一个线程被CUP调度

更多文档参见:http://scrapy-chs.readthedocs.io/zh_CN/latest/index.html

 

转载于:https://www.cnblogs.com/sxzwj/p/6411050.html

编程小号
上一篇 2025-01-09 17:06
下一篇 2025-01-09 16:57

相关推荐

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。
如需转载请保留出处:https://bianchenghao.cn/bian-cheng-ji-chu/106279.html