2024最全大数据学习路线(建议收藏)_大数据先学数学还是先学编程

2024最全大数据学习路线(建议收藏)_大数据先学数学还是先学编程曾经的我 也曾陷入同样的焦虑和迷茫情绪

img
img
img

既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上大数据知识点,真正体系化!

由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新

需要这份系统化资料的朋友,可以戳这里获取

曾经的我,也曾陷入同样的焦虑和迷茫情绪。这些情绪完全是由于自己在学习过程中,你所期望的高度和自己目前所处的高度的落差所导致的,都是正常的情绪。

但是我觉得我们也不要过于担忧,因为未来总是不可预测的,谁也不知道35岁以后的我们会做什么,我们不要过早的杞人忧天,也不要过早的限制自己,我们现在所选择的工作,未来不一定就得干到老。

所以,当前我们应该要先沉淀自己,打造自己在未来的核心竞争力,先攒到自己的第一桶金才是王道,有资本了,就有更多的选择和更大的可能。

1大数据发展前景

我根据我国发布的《第十四个五年规划和2035年远景目标纲要》,带大家看看以下一个指标。

创新驱动这个类别中,数字核心产业增加值占GDP比重要从2020年的7.8%,到2025年要增加到10%。这个概念大家可能还不是很敏感,跟着小林继续看下面另一张图。

经济社会发展主要指标

我国在大力发展的数字经济核心重点产业中,其中包括大数据领域,如下图所示。政府大力推动大数据领域技术发展创新,实现数字化转型,大数据在未来有较大的发展潜力!

数字经济重点产业

2020年是我国5G的年,国家在大力建设 5G 的基础设施。2021年,5G手机可能会逐渐增长,将会是大数据爆发的1年。5G网络所产生的数据速率:每秒 10G 的数据量,这会使得各个公司的数据量爆发式增长。

此外,我国第一批大数据专业在2017年开设,2021年第一批大数据专业学生才毕业。因此,大数据领域人才紧缺,需要大量的数据研发、数据分析以及数据挖掘工程师。

2学习路线总论

未来想在互联网发展,应该怎么学?就大数据方向来说,我个人认为主要有三个方面:

第一,计算机基础知识是不可或缺的,如果你拥有扎实的基础知识,在遇到问题时可以快速认识到问题的本质,从而解决问题。我至今在不断在加强自己计算机基础知识的学习;

第二,大数据框架的技术原理,对于重点框架要重视企业级调优以及源码的学习。

第三,项目实战。学习了大量的技术需要结合项目场景去应用,才能加深你对技术的理解。

大数据是一个进可攻、退可守的方向

进可以往人工智能方向发展,但是需要非常扎实的数学知识。

我非常赞同我导师曾经跟我说的一句话:“任何问题,最终都会归咎于数学问题”!因此较好的数学能力可以支撑你不断的挑战新的问题!

退可以往大数据应用开发方向发展,但是需要丰富的框架使用和调优经验。

2.1计算机基础
  • 精通一门语言:Java,C,C++,Python,Go,Scala,等等。(大数据建议选择 JavaScala或者Python)我自己学习的是Java语言,语言只是一门工具,无需太过纠结。
  • 数据结构与算法:链表,队列,堆,二叉树,排序,查找,贪心,回溯等。
  • 计算机网络与基础:OSI七层体系,常用的TCP/IP四层体系。
  • 操作系统:进程与线程,乐观锁与悲观锁,缓存一致性,CPU时间片调度。
  • 数学:高等数学,线性代数,概率论与数理统计。

推荐数学是考虑到一些小伙伴要进一步往 AI 方向发展,而数学是机器学习的基石。你只有拥有了这些底层基础,才能支撑你走得更远!

2.2大数据组件

整个大数据知识体系学习需要花较长的时间,大数据框架也比较多,下图是我自学大数据的技术栈。我是依据目标企业的招聘要求,选择以下技术栈学习,还有其它的框架,可以视情况而定,选择要不要学。

Java是基础工具,我个人是学完JavaSE,重点对集合、多线程以及JVM进行深入学习,JavaEE没有花时间学。如果你时间充裕,比如大二或者研一同学,可以深入学习JavaEE,再进行后续的学习也行。

目前企业生产基本使用的是 Linux 系统,掌握 Linux 基本原理是未来必备技能。

Hadoop 是分步式系统基础架构,主要解决海量数据的存储和海量数据分析计算问题,包含HDFS,MapReduce,Yarn 三个组件。其它框架在此不作介绍了。

大数据重点技术栈

针对一个技术框架如何学习,可以参照我下面这个视频!我总结了框架学习要按照阶段去学,循序渐近,而不是一蹴而就,急功近利会导致你技术学的不够深入不说,更重要的是浪费了你的时间。

2.3项目实践

大部分非科班同学都会遇到的痛点,在学校没有实际的项目。但是找工作的时候,简历上至少需要23个项目,并且要有12个亮点项目。比如在某个项目中,你遇到什么困难,采用什么技术解决的?做了哪些优化?

关于项目这块,后面我有项目实战推荐!

3学习资料推荐

我自己作为一名非科班转型者,深知一份好的入门学习资料可以节约多少时间。因此,我对自己自学以来的历程,做了一下复盘,并且把我自己的学习路线以及自学的学习资料推荐给大家。

希望能够给转行的小伙伴们一点参考。主要包含了计算机基础知识大数据框架学习、项目实战三个模块相关的入门视频和好的书籍推荐!

建议零基础同学先学习Java语言基础语法,一个月左右便可以把JavaSE学完,后续找面经查漏补缺!

之后搭建Linux虚拟机平台,为后续大数据框架学习作准备。

因为我的时间比较紧急,不仅要完成导师布置的任务,还要挤出时间学习。所以,我的计算机基础知识是穿插在大数据框架学习中间,面试前重点刷了一些常见的面试题。以下是我刷的Java面试题博客链接。

3.1基础

编程语言基础:Java基础是所有后续大数据学习的基石。我最开始是通过看书学习,看完后没有什么感觉,幸好之后找到了尚学堂高淇的300集,这个视频里把每一个知识点都讲的非常全面,也会有详细的案例。如果你是零基础,建议看视频入门,代码一定要自己敲一遍,切忌眼高手低!

Java 推荐《Java编程思想》,有在线中文版

此外,还有Scala语言,因为后续要学到 Spark、Flink等框架,这些框架采用Scala编程极为灵活,所以需要学习Scala的编程规范。关于Scala学习,推荐尚硅谷老师的视频。

尚硅谷Scala语言入门:

https://www.bilibili.com/video/BV1Xh411S7bP?p=50

注意:在这个阶段,Scala 语言可以先不学,可以在学习 Spark 之前学习!


数据结构与算法:强烈推荐左神的视频,他讲的内容基本上和企业面试相关,通俗易懂。我当时看的是一个在牛客网上讲视频:其中包括算法初级和进阶。在听这个视频前,最好去了解下基本的数据结构!可以从下面百度网盘中获取视频资料和课件!看完视频后,具备一定的基础了,可以把剑指offer刷完!

数据结构与算法视频链接:

https://bianchenghao.cn/s/14bGK2Wva2MbyviIKjkhNNQ

提取码:3ojw

如果网盘链接失效,请添加我微信:a,备注【左神算法】,我重新给你发一遍!


计算机网络与基础:我当时看的是B站方老师讲解的视频,讲的比较全面透彻,而且时间也不是很长,总共42节,每节平均40分钟左右,一周左右便可以看完,针对非科班同学特别友好!要留大把时间给后面技术框架学习,听完视频,可以去搜一搜相关的面经,可以查漏补缺。

方老师计算机网络链接:

https://www.bilibili.com/video/BV1yE411G7Ma?p=23


操作系统:操作系统知识比较多涉及到的内容也比较细,如果你的时间充裕,且不着急面试找工作的话,你可以去B站搜索哈工大李治军老师的课程,老师会用Linux内核代码得视角帮助你理解操作系统得原理。

操作系统链接:

https://www.bilibili.com/video/BV1d4411v7u7?from=search&seid=

如果你时间紧急,想直接应对面试,这里给你分享一份总结好的操作系统重点面试知识!

请添加我微信:a,备注【操作系统】,我给你发一份详细的操作系统面试知识!


数学理论基础:大数据与人工智能结合,那么数学基础是不可或缺的。但是,数学是学不完的,也没有几个人像数学专业的同学或者博士那样精通数学,所以大家要认识到,入门 AI 只要掌握数学中的基础知识就好,主要包含:高等数学、线性代数、概率论与数理统计三门课程。这里为大家整理了三篇简易的数学入门文章:

高等数学:https://zhuanlan.zhihu.com/p/

线性代数:https://zhuanlan.zhihu.com/p/

概率论与数理统计:https://zhuanlan.zhihu.com/p/

推荐笔记:《机器学习的数学基础》和《斯坦福大学机器学习的数学基础》

链接:https://bianchenghao.cn/s/1mEPLOurp57IZL9GNOwx2sw

提取码:iihb

如链接失效,请加我微信:a,备注【数学基础】

3.2大数据框架

Linux:无论你做的是后端还是大数据,Linux已经成为企业筛选人才的一个标准。我极力推荐观看尚硅谷韩顺平老师的Linux入门视频教程,清华大学的学霸,课程逻辑清晰,讲解透彻。

国内入门Linux课程几乎选择该门课程。这也是我学习印象最深刻的一门课,看完后,只能一句卧槽,居然还能讲的的这么清晰!

尚硅谷韩顺平Linux链接:

https://www.bilibili.com/video/av

可以结合《Linux就该这么学》这本术一起学习,加深对 Linux 理解!


Hadoop(重点):Hadoop是大数据技术中最重要的框架之一,是学习大数据的第一课。

目前,Hadoop已经从1.x版本发展到现在的3.x版本。Hadoop一共包含3个组件:分别是最强的分步式文件系统HDFS,海量数据并行计算框架MapReduce,流行的资源管理系统Yarn

任何框架的学习,先搭建好环境,线上跑一个测试案例,之后再深入其原理。

HDFS有伪分布式、完全分步式以及高可用架构模型,重点了解HA架构模型以及各个角色的职责。

HDFS的架构模型主要包括以下角色:NamenodeActive、Standyby),DatanodeJournalNodeDFSZKFailoverControllerZKFC),SecondNamenode

SecondNamenode应用较少,但还是要了解其工作机制。

MapReduce的核心思想、详细工作流程,Shuffle机制也要重点掌握,面试会问。

Yarn资源管理系统不仅适用于MapReduce计算框架,同时也会被用于Spark计算框架,所以它的工作机制也非常重要。

我推荐大家学习尚硅谷的Hadoop教程,从原理到生产实践调优,再深入源码,非常透彻。

尚硅谷Hadoop链接:

https://www.bilibili.com/video/av

可以结合《Hadoop权威指南》第四版学习。

如果对 Hadoop 源码感兴趣,可以参考《Hadoop技术内幕》(董西成)和《Hadoop2.x HDFS源码剖析》这两本书。


ZooKeeperZooKeeper是一个分步式协调管理组件,主要的典型应用场景是数据发布/订阅、分步式协调/通知、集群管理等。

你可以结合《从Paxos到ZooKeeper》这本书结合一起学,这本书不仅阐述了CAP理论,把ZooKeeper的核心原理讲的很透。小白可以从下面这个视频入门。

尚硅谷ZooKeeper链接:

https://space.bilibili.com//video?keyword=ZooKeeper

注:视频仅作为初学者入门,要深入学习还需要看书和研究官方文档。


HiveHive 是一款开源数据仓库工具,它可以将结构型数据映射成一张表,但其底层使用的是MapReduce,提供类SQL查询,一般称之为HQL

初学者入门Hive,可以从视频开始,重点需要了解内部表与外部表的区别,以及分区分桶等。

如果你要深入学习其内部原理及调优,可以去读一读《Hive编程指南》和Apache官方文档,对企业级的调优有详细的阐述。

尚硅谷Hive链接:

https://www.bilibili.com/video/BV1EZ4y1G7iL


HBaseHBase是一个结构化数据的分步式存储系统,可扩展也支持海量数据存储的NoSQL数据库,是每一个大数据从业者应该要掌握的基本框架。重点要掌握其架构原理,各个角色职责,Compact流程和Region流程。下面是入门 HBase 的视频教程。

尚硅谷HBase链接:

https://www.bilibili.com/video/BV1Y4411B7jy

注:可以结合《HBase权威指南》和《HBase实战中文版》两本书,加深对 HBase 的理解。


Redis(重点!):Redis是一个开源的 key-value 存储系统,支持存储的 value 类型相对更多,并且支持各种不同方式的排序,为了保存效率,数据都是缓存在内存中。

该组件无论是后端还是大数据,都是必会的一个框架。我学习一个新技术,先是通过视频入门,之后再去看相关书籍和官方文档,深入理解技术细节。

Redis 推荐大家看尚硅谷周阳老师讲的,就是该课程有点老,很多新的特性可能无法了解。我贴出了两个Redis 课程入门学习链接:

尚硅谷周阳老师Redis链接:

https://www.bilibili.com/video/BV1oW411u75R

2021最新入门到精通Redis链接:

https://www.bilibili.com/video/BV1Rv41177Af?p=4

推荐书籍:《Redis设计与实现》和《Redis 深度历险:核心原理与应用实践》

img
img
img

既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上大数据知识点,真正体系化!

由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新

需要这份系统化资料的朋友,可以戳这里获取

ps://www.bilibili.com/video/BV1Rv41177Af?p=4

推荐书籍:《Redis设计与实现》和《Redis 深度历险:核心原理与应用实践》

[外链图片转存中…(img-wKF54NIH-20)]
[外链图片转存中…(img-pd6bxye0-20)]
[外链图片转存中…(img-kSlyKbhK-21)]

既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上大数据知识点,真正体系化!

由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新

需要这份系统化资料的朋友,可以戳这里获取

今天的文章 2024最全大数据学习路线(建议收藏)_大数据先学数学还是先学编程分享到此就结束了,感谢您的阅读。
编程小号
上一篇 2024-10-20 16:46
下一篇 2024-10-20 16:30

相关推荐

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。
如需转载请保留出处:https://bianchenghao.cn/bian-cheng-ji-chu/3980.html