绝对值不等式6个基本公式

绝对值不等式6个基本公式绝对值不等式的公式为 a b a b a b a a a b b b b b b 由 得 a b ab a b ab a b 由 得 a b a b a b a b a b

绝对值不等式的公式为: 绝对值不等式的公式为: 绝对值不等式的公式为:

∣ ∣ a ∣ − ∣ b ∣ ∣ ≤ ∣ a ± b ∣ ≤ ∣ a ∣ + ∣ b ∣ ||a|-|b||\leq|a\pm b|\leq|a|+|b| ∣∣ab∣∣a±ba+b

− ∣ a ∣ ≤ a ≤ ∣ a ∣ ① − ∣ b ∣ ≤ b ≤ ∣ b ∣ ② − ∣ b ∣ ≤ -b ≤ ∣ b ∣ ③ \begin{matrix}-\left|a\right|\leq a\leq\left|a\right| &\text{①}\\ \\ -\left|\text{b}\right|\leq\text{b}\leq\left|\text{b}\right|&\text{②}\\ \\ -\left|\text{b}\right|\leq\text{-b}\leq\left|\text{b}\right|&\text{③}\end{matrix} aaabbbb-bb

由① + ②得: 由①+②得: +得:
− ( ∣ a ∣ + ∣ b ∣ ) ≤ a + b ≤ ∣ a ∣ + ∣ b ∣ ⇒ ∣ a + b ∣ ≤ ∣ a ∣ + ∣ b ∣ -(\left|a\right|+\left|b\right|)\leq a+b\leq\left|a\right|+\left|b\right|\Rightarrow \left|a+b\right|\le\left|a\right|+\left|b\right| (a+b)a+ba+ba+ba+b

由① + ③得: 由①+③得: +得:
− ( ∣ a ∣ + ∣ b ∣ ) ≤ a − b ≤ ∣ a ∣ + ∣ b ∣ ⇒ ∣ a − b ∣ ≤ ∣ a ∣ + ∣ b ∣ -(\left|a\right|+\left|b\right|)\leq a-b\leq\left|a\right|+\left|b\right|\Rightarrow \big|a-b\big|\le\big|a\big|+\big|b\big| (a+b)aba+b ab a + b

而 而
∣ a ∣ = ∣ ( a + b ) − b ∣ = ∣ ( a − b ) + b ∣ ∣ b ∣ = ∣ ( b + a ) − a ∣ = ∣ ( b − a ) + a ∣ \begin{array}{l}\left|a\right|=\left|(a+b)-b\right|=\left|(a-b)+b\right|\\ \left|b\right|=\left|(b+a)-a\right|=\left|(b-a)+a\right|\end{array} a=(a+b)b=(ab)+bb=(b+a)a=(ba)+a

由 ∣ a + b ∣ ≤ ∣ a ∣ + ∣ b ∣ 得 : 由\left|a+b\right|\le\left|a\right|+\left|b\right|得: a+ba+b:

∣ a ∣ = ∣ ( a + b ) − b ∣ ≤ ∣ a + b ∣ + ∣ − b ∣ ⇒ ∣ a ∣ − ∣ b ∣ ≤ ∣ a + b ∣ ⑥ ∣ b ∣ = ∣ ( b + a ) − a ∣ ≤ ∣ b + a ∣ + ∣ − a ∣ ⇒ ∣ a ∣ − ∣ b ∣ ≥ − ∣ a + b ∣ ⑦ \begin{array}{l}\left|a\right|=\left|(a+b)-b\right|\leq\left|a+b\right|+\left|-b\right|\Rightarrow \left|a\right|-\left|b\right|\leq\left|a+b\right|&\text{⑥}\\ \left|b\right|=\left|\left(b+a\right)-a\right|\leq\left|b+a\right|+\left|-a\right|\Rightarrow \left|a\right|-\left|b\right|\geq-\left|a+b\right|&\text{⑦}\end{array} a=(a+b)ba+b+baba+bb=(b+a)ab+a+aaba+b

∣ a ∣ = ∣ ( a − b ) + b ∣ ≤ ∣ a − b ∣ + ∣ b ∣ = > ∣ a ∣ − ∣ b ∣ ≤ ∣ a − b ∣ ⑧ ∣ b ∣ = ∣ ( b − a ) + a ∣ ≤ ∣ b − a ∣ + ∣ a ∣ = > ∣ a ∣ − ∣ b ∣ ≥ − ∣ a − b ∣ ⑨ \begin{array}{l}\left|a\right|=\left|(a-b)+b\right|\le\left|a-b\right|+\left|b\right|=>\left|a\right|-\left|b\right|\le\left|a-b\right|&\text{⑧}\\ \left|b\right|=\left|(b-a)+a\right|\le\left|b-a\right|+\left|a\right|=>\left|a\right|-\left|b\right|\ge-\left|a-b\right|&\text{⑨}\end{array} a=(ab)+bab+b=>ababb=(ba)+aba+a=>abab

由⑥,⑦得: ∣ ∣ a ∣ − ∣ b ∣ ∣ ≤ ∣ a + b ∣ 或者: ∣ a ∣ = ∣ a + b − b ∣ ≤ ∣ b ∣ + ∣ a + b ∣ → ∣ a ∣ − ∣ b ∣ ≤ ∣ a + b ∣ a , b 交换 → ∣ b ∣ − ∣ a ∣ ≤ ∣ a + b ∣ 由⑥,⑦得:||a|-|b||\leq|a+ b|\\或者:\\|a|=|a+b-b|\leq|b|+|a+b|\rightarrow |a|-|b|\leq|a+ b|\\a,b交换\rightarrow |b|-|a|\leq|a+ b| 得:∣∣ab∣∣a+b或者:a=a+bbb+a+baba+ba,b交换baa+b

由⑧,⑨得: ∣ ∣ a ∣ − ∣ b ∣ ∣ ≤ ∣ a − b ∣ 或者: ∣ a ∣ = ∣ a − b + b ∣ ≤ ∣ b ∣ + ∣ a − b ∣ → ∣ a ∣ − ∣ b ∣ ≤ ∣ a − b ∣ a , b 交换 → ∣ b ∣ − ∣ a ∣ ≤ ∣ a − b ∣ 由⑧,⑨得:||a|-|b||\leq|a- b|\\或者:\\|a|=|a-b+b|\leq|b|+|a-b|\rightarrow |a|-|b|\leq|a- b|\\a,b交换\rightarrow |b|-|a|\leq|a- b| 得:∣∣ab∣∣ab或者:a=ab+bb+abababa,b交换baab

等号成立的条件(特别是求最值),即: ∣ a − b ∣ = ∣ a ∣ + ∣ b ∣ → a b ≤ 0 ∣ a ∣ − ∣ b ∣ = ∣ a + b ∣ → b ( a + b ) ≤ 0 ∣ a ∣ − ∣ b ∣ = ∣ a − b ∣ → b ( a − b ) ≥ 0 等号成立的条件(特别是求最值),即:\\\begin{array}{l}\left|a-b\right|=\left|a\right|+\left|b\right|\rightarrow ab\leq0\\ \left|a\right|-\left|b\right|=\left|a+b\right|\rightarrow b(a+b)\leq0\\ \left|a\right|-\left|b\right|=\left|a-b\right|\rightarrow b(a-b)\geq0\end{array} 等号成立的条件(特别是求最值),即:ab=a+bab0ab=a+bb(a+b)0ab=abb(ab)0

注:利用 ∣ a − b ∣ = ∣ a ∣ + ∣ b ∣ → a b ≤ 0 注:利用\left|a-b\right|=\left|a\right|+\left|b\right|\rightarrow ab\leq0 注:利用ab=a+bab0

∣ a ∣ − ∣ b ∣ = ∣ a + b ∣ → ∣ a ∣ = ∣ b ∣ + ∣ a + b ∣ → ∣ a + b − b ∣ = ∣ b ∣ + ∣ a + b ∣ |a|-|b|=|a+b|\\\rightarrow |a|=|b|+|a+b|\\\rightarrow |a+b-b|=|b|+|a+b| ab=a+ba=b+a+ba+bb=b+a+b

∣ a ∣ − ∣ b ∣ = ∣ a − b ∣ → ∣ a ∣ = ∣ b ∣ + ∣ a − b ∣ → ∣ a − b + b ∣ = ∣ b ∣ + ∣ a − b ∣ \left|a\right|-\left|b\right|=\left|a-b\right|\\\rightarrow |a|=|b|+|a-b|\\\rightarrow |a-b+b|=|b|+|a-b| ab=aba=b+abab+b=b+ab

今天的文章 绝对值不等式6个基本公式分享到此就结束了,感谢您的阅读。
编程小号
上一篇 2024-12-04 21:46
下一篇 2024-12-04 21:30

相关推荐

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。
如需转载请保留出处:https://bianchenghao.cn/bian-cheng-ji-chu/77715.html