高等数学:e值计算方法

高等数学:e值计算方法与之相对的是 TeX 的版本号是趋向于圆周率

最初的定义及计算方法
e = lim ⁡ n → ∞ ( 1 + 1 n ) n = lim ⁡ n → ∞ ∑ i = 0 n C i n 1 n − i ( 1 n ) i = lim ⁡ n → ∞ [ C 0 n 1 n ( 1 n ) 0 + C 1 n 1 n − 1 ( 1 n ) 1 + C 2 n 1 n − 2 ( 1 n ) 2 + C 3 n 1 n − 3 ( 1 n ) 3 + … + C n n 1 0 ( 1 n ) n ] = lim ⁡ n → ∞ [ 1 × 1 + n × 1 n + n ! ( n − 2 ) ! 2 ! × 1 n 2 + n ! ( n − 3 ) ! 3 ! × 1 n 3 + … + 1 × 1 n n ] = lim ⁡ n → ∞ [ 1 + 1 + n × ( n − 1 ) 2 n 2 + n × ( n − 1 ) ( n − 2 ) 3 × 2 n 3 + … + 1 n n ] = 2 + 1 2 + 1 6 + … = 2.71828 ⋯ \begin{aligned} e&=\lim_{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n} \\ &=\lim_{n \rightarrow \infty} \sum_{i=0}^{n} C_{i}^{n} 1^{n-i}\left(\frac{1}{n}\right)^{i} \\ &=\lim_{n \rightarrow \infty}\left[C_{0}^{n} 1^{n}\left(\frac{1}{n}\right)^{0}+C_{1}^{n} 1^{n-1}\left(\frac{1}{n}\right)^{1}+C_{2}^{n} 1^{n-2}\left(\frac{1}{n}\right)^{2}+C_{3}^{n} 1^{n-3}\left(\frac{1}{n}\right)^{3}+\ldots+C_{n}^{n} 1^{0}\left(\frac{1}{n}\right)^{n}\right] \\ &=\lim_{n \rightarrow \infty}\left[1 \times 1+n \times \frac{1}{n}+\frac{n !}{(n-2) ! 2 !} \times \frac{1}{n^{2}}+\frac{n !}{(n-3) ! 3 !} \times \frac{1}{n^{3}}+\ldots+1 \times \frac{1}{n^{n}}\right] \\ &=\lim_{n \rightarrow \infty}\left[1+1+\frac{n \times(n-1)}{2 n^{2}}+\frac{n \times(n-1)(n-2)}{3 \times 2 n^{3}}+\ldots+\frac{1}{n^{n}}\right] \\ &=2+\frac{1}{2}+\frac{1}{6}+\ldots \\ &=2.71828 \cdots \end{aligned}\\ e=nlim(1+n1)n=nlimi=0nCin1ni(n1)i=nlim[C0n1n(n1)0+C1n1n1(n1)1+C2n1n2(n1)2+C3n1n3(n1)3++Cnn10(n1)n]=nlim[1×1+n×n1+(n2)!2!n!×n21+(n3)!3!n!×n31++1×nn1]=nlim[1+1+2n2n×(n1)+3×2n3n×(n1)(n2)++nn1]=2+21+61+=2.71828
补点能算出 e e e的等式

极限相关
lim ⁡ n → ∞ ( 1 + 1 n ) n = lim ⁡ t → 0 ( 1 + t ) 1 t = e lim ⁡ n → ∞ n ! n n = e − 1 lim ⁡ n → ∞ ( ( ( n + 1 ) ! ) 1 n + 1 − ( n ! ) 1 n ) = 1 e lim ⁡ n → ∞ ( ∏ i = 1 n p i ) 1 p n = e \begin{aligned} \lim_{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n} =\lim_{t \rightarrow 0}(1+t)^{\frac{1}{t}}&=e\\ \lim\limits_{n\to\infty}\frac{\sqrt[n]{n!}}{n}&=e^{-1}\\ \lim\limits_{n\rightarrow\infty} \left( ((n+1)!)^{\frac{1}{n+1}}-(n!)^{\frac{1}{n}} \right)&=\frac{1}{e} \end{aligned}\\\lim _{n \rightarrow \infty}\left(\prod_{i=1}^{n} p_{i}\right)^{\frac{1}{p_{n}}}=e \\ nlim(1+n1)n=t0lim(1+t)t1nlimnnn! nlim(((n+1)!)n+11(n!)n1)=e=e1=e1nlim(i=1npi)pn1=e
p n p_{n} pn是第 n n n个素数

补几个简单拓展
lim ⁡ n → + ∞ ( n n ⋅ ( n + 1 ) ! n + 1 − ( n + 1 ) n + 1 ⋅ n ! n ) = 1 e lim ⁡ n → ∞ ( n 1 + n − 1 2 + ⋯ + 1 n ln ⁡ ( n ! ) ) ln ⁡ ( n ! ) n = e γ lim ⁡ n → ∞ ( ( n + 1 ) ! n + 1 n ! n ) n = e \begin{aligned} \lim_{n\to+\infty}\left(\sqrt[n]n\cdot\sqrt[n+1]{(n+1)!}-\sqrt[n+1]{(n+1)}\cdot\sqrt[n]{n!}\right)&=\frac{1}{e}\\ \lim_{n\rightarrow\infty}\left(\frac{\frac{n}{1}+\frac{n-1}{2}+\cdots+\frac{1}{n}}{\ln(n!)} \right)^{ {\frac{\ln(n!)}{n}}}&=e^\gamma \\ \lim_{n\to\infty}\left(\frac{\sqrt[n+1]{(n+1)!}}{\sqrt[n]{n!}}\right)^n&=e\\ \end{aligned}\\ n+lim(nn n+1(n+1)! n+1(n+1) nn! )nlim(ln(n!)1n+2n1++n1)nln(n!)nlim(nn! n+1(n+1)! )n=e1=eγe
级数相关
连分数
e = 2 + 1 1 + 1 2 + 1 1 + 1 1 + 1 4 + 1 1 + 1 1 + 1 6 + 1 1 + ⋱ e=2+\frac{1}{1+\frac{1}{2+\frac{1}{1+\frac{1}{1+\frac{1}{4+\frac{1}{1+\frac{1}{1+\frac{1}{6+\frac{1}{1+\ddots}}}}}}}}} \\ e=2+1+2+1+1+4+1+1+6+1+111111111
两个小趣闻
( i ) \quad(\mathrm{i}) (i) G o o g l e Google Google 2004 2004 2004年的首次公开募股,集资额不是通常的整数,而是 2718281828 2718281828 2718281828美元

( i i ) \quad(\mathrm{ii}) (ii)著名计算机科学家高德纳的软件 M e t a f o n t Metafont Metafont版本号趋向 e    e \,\, e(就是说版本号是 2 2 2 2.7 2.7 2.7 2.71 2.71 2.71 2.718 2.718 2.718 ⋯ \cdots ),与之相对的是:TeX的版本号是趋向于圆周率 π \pi π

编程小号
上一篇 2025-02-07 23:51
下一篇 2025-03-07 19:17

相关推荐

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。
如需转载请保留出处:https://bianchenghao.cn/bian-cheng-ji-chu/85533.html