一二次方程的求跟式:对于ax方+bx+c=0的一二次方程有x1x2=(-b±√(b方-4ac))/2a因为b2-4ac在根号下,所以b2-4ac为负数,解不出来实数跟。也就是无解,其实那是虚数跟。
只含有一个未知数(一),并且未知数项的最高次数是2(二次)的整式方程叫做一二次方程 。一二次方程经过整理都可化成一般形式ax²+bx+c=0(a≠0)。其中ax²叫作二次项,a是二次项系数;bx叫作一次项,b是一次项系数;c叫作常数项。
利用一二次方程根的判别式(
)可以判断方程的根的情况。
一二次方程
的根与根的判别式 有如下关系:
①当
时,方程有两个不相等的实数根;
②当
时,方程有两个相等的实数根;
③当
时,方程无实数根,但有2个共轭复根。
上述结论反过来也成立。
扩展资料:
求根公式:
(1)用求根公式法解一二次方程的一般步骤为:
①把方程化成一般形式
,确定
的值(注意符号);
②求出判别式
的值,判断根的情况;
③在
(注:此处△读“德尔塔”)的前提下,把
的值代入公式
进行计算,求出方程的根 。
注意:一二次方程的求根公式在方程的系数为有理数、实数、复数或是任意数域中适用。一二次方程中的判别式:
,应该理解为“如果存在的话,两个自乘后为的数当中任何一个”。在某些数域中,有些数值没有平方根。
用配方法解一二次方程的步骤:
①把原方程化为一般形式;
②方程两边同除以二次项系数,使二次项系数为1,并把常数项移到方程右边;
③方程两边同时加上一次项系数一半的平方;
④把左边配成一个完全平方式,右边化为一个常数;
⑤进一步通过直接开平方法求出方程的解,如果右边是非负数,则方程有两个实根;如果右边是一个负数,则方程有一对共轭虚根。
今天的文章 一二次函数复习分享到此就结束了,感谢您的阅读。
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。
如需转载请保留出处:https://bianchenghao.cn/bian-cheng-ji-chu/92961.html