pointnet改进(pointnet改进专栏)

pointnet改进(pointnet改进专栏)导言 最近 3d 目标检测领域出了一篇新作 思路简单 却在 nuScenes 榜单上高居第二 正式讲解它之前 先附上文章和代码地址 论文题目 Center based 3D Object Detection and Tracking 在公众号 3D 视觉工坊 后台 回复 CenterPoint 即可获得论文 代码 https github com tianweiy CenterPoint CenterPoint 刷榜结果 正文 CenterPoint 听名字有种似曾相识的感觉 没错



导言

最近3d目标检测领域出了一篇新作,思路简单,却在nuScenes榜单上高居第二。正式讲解它之前,先附上文章和代码地址:

论文题目:Center-based 3D Object Detection and Tracking

在公众号「3D视觉工坊」后台,回复「CenterPoint」,即可获得论文。

代码:https://github.com/tianweiy/CenterPoint

CenterPoint刷榜结果

正文

CenterPoint听名字有种似曾相识的感觉,没错! 这篇文章的灵感正是来自于图像中的目标检测算法CenterNet: Objects as Points[1].(二者的作者都来自于UT Austin,不知道背后有没有什么不为人知的小故事。)所以,让我们首先复习一下CenterNet。

CenterNet

CenterPoint

前处理及主干网络。CenterPoint延续了CenterNet的思路,并没有设计新的主干网络,而是采用之前的工作。其framework如下图所示,图中编码器阶段的虚线框代表可选项,蓝色框代表深度网络,红色框代表固定操作。

CenterPoint framework

实际上,CenterPoint的主干网络(3D encoder)采用的是PointPillars和VoxelNet的encoder。二者的区别可以通过作者的实验结果看出:

PointPillars vs VoxelNet

由于PointPillars没有耗时的3DCNN,因而速度更快;VoxelNet因为有更多的参数,所以mAP会更高。

检测头。网络有四个输出:①表征目标中心位置的热力图;②目标尺寸;③目标朝向;④目标速度 (速度用于做目标跟踪,该思路来源于另一篇文章CenterTrack[2]) 。不难看出,这是一种典型的center-based anchor-free检测头。在文中,作者论述了采用这种center-based representation 对检测任务的两点好处:首先,点没有内在的方向。这大大减少了检测器的搜索空间,同时有利于网络学习对象的(rotational invariance)和等变性(rotational equivariance)。其次,在三维检测中,目标定位比对目标的其他三维属性进行更重要。这个反映在常用的评估指标中,这些指标主要依赖于检测到的目标和gt box中心之间的距离,而不是估计的3dbox的属性。笔者认为作者未提到的一个明显的好处则是,此类center-based representation方法不需要做NMS,能减少运算。

【补充知识:

就笔者目前看见的anchor-free检测头可以分为三种:

补充结束】

CenterNet vs CenterPoint.虽然整体思路和CenterNet类似,但是CenterPoint也有三维检测器的独有的特点:

1、在三维检测中,主干网络需要学习目标的旋转不变性和等变性。为了让网络更好的捕获这个特征,作者在中心点预测分支和回归分支各添加了一个可变卷积。中心点预测分支学习旋转不变性,回归分支学习等变性。

2、考虑到网络输出的旋转不变性,作者选择了圆形池化区域,而不是CenterNet中的方形区域。具体说,就是在鸟瞰中,只有当某中心半径r内没有具有更高置信度的中心时,该对象才被视为正,作者将该方法称为Circular NMS。Circular NMS与基于3D IoU的NMS具有一样的抑制效果,但速度更快。

3、基于上述的设计,检测器依然没有达到完美的旋转不变性和等变性。作者因此构建了一个由输入点云的四个旋转、对称副本组成的简单集合,并将这一集合共同输入CenterPoint,每一个都产生一个热力图和回归结果,然后简单地将这些结果求均值。

实验结果。作者在nuScenes数据集上进行了实验,实验结果如下。

不难看出, CenterPoint在各个类别上都有较好的检测结果,mAP甚至直接超出了PointPillar一倍。

更难能可贵的是,通过下图中作者的ablation study我们可以看出,CenterPoint在性能明显提升的情况下,实时性并没有下降。这也不难理解,毕竟backbone没有大的改变。

结语

文章看到最后我沉默了。其实当初看到CenterNet的时候,我相信很多做3D CVer都会自然的联想到将该方法移植到3D中。但是正当我跃跃欲试的时候,看见一篇叫做3DSSD[3]的文章,里面提到:However, it is not optimal to directly apply center-ness labels to the 3D detection task. Given that all LiDAR points are located on surfaces of objects, the center-ness labels are all very small and similar. It is almost impossible to distinguish good predictions from other points. 好像很有道理,基于此,我便放弃了尝试。现在看来,在deep learning 领域,还是应该时刻铭记事实胜于雄辩这个真理 。

参考文献

[1] Zhou X, Wang D, Krähenbühl P. Objects as points[J]. arXiv preprint arXiv:1904.07850, 2019.

[2] Zhou X, Koltun V, Krähenbühl P. Tracking Objects as Points[J]. arXiv preprint arXiv:2004.01177, 2020.

[3] Shi S, Wang X, Li H. Pointrcnn: 3d object proposal generation and detection from point cloud[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2019: 770-779.

[4] Yang Z, Sun Y, Liu S, et al. 3dssd: Point-based 3d single stage object detector[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2020: 11040-11048.

[5] Wang Y, Fathi A, Kundu A, et al. Pillar-based Object Detection for Autonomous Driving[J]. arXiv preprint arXiv:2007.10323, 2020.

本文仅做学术分享,如有侵权,请联系删文。

编程小号
上一篇 2025-09-02 22:30
下一篇 2025-06-26 14:33

相关推荐

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。
如需转载请保留出处:https://bianchenghao.cn/bian-cheng-ri-ji/20551.html