1.1、你在最近的项目中哪些场景使用了redis呢?
一是验证你的项目场景的真实性,二是为了作为深入发问的切入点。
缓存
- 缓存三兄弟(穿透、击穿、雪崩)、双写一致、持久化、数据过期策略,数据淘汰策略
分布式锁
- setnx、redisson
消息队列、延迟队列
- 何种数据类型
1.2、缓存穿透
缓存穿透是指查询一个一定不存在的数据,如果从存储层查不到数据则不写入缓存,这将导致这个不存在的数据每次请求都要到 DB 去查询,可能导致 DB 挂掉。这种情况大概率是遭到了攻击。
解决方案一:缓存空数据,查询返回的数据为空,仍把这个空结果进行缓存
- 1
优点: 简单
缺点: 消耗内存,可能会发生不一致的问题
解决方案二:布隆过滤器
优点: 内存占用较少,没有多余key
缺点: 实现复杂,存在误判
1.3、布隆过滤器
bitmap(位图): 相当于是一个以(bit)位为单位的数组,数组中每个单元只能存储二进制数0或1。
布隆过滤器主要是用于检索一个元素是否在一个集合中。我们当时使用的是redisson实现的布隆过滤器。
它的底层主要是先去初始化一个比较大数组,里面存放的二进制0或1。在一开始都是0,当一个key来了之后经过3次hash计算,模于数组长度找到数据的下标然后把数组中原来的0改为1,这样的话,三个数组的位置就能标明一个key的存在。查找的过程也是一样的。
当然是有缺点的,布隆过滤器有可能会产生一定的误判,我们一般可以设置这个误判率,大概不会超过5%,其实这个误判是必然存在的,要不就得增加数组的长度,其实已经算是很划分了,5%以内的误判率一般的项目也能接受,不至于高并发下压倒数据库。
误判率:数组越小误判率就越大,数组越大误判率就越小,但是同时带来了更多的内存消耗。
1.4、缓存击穿
缓存击穿的意思是对于设置了过期时间的key,缓存在某个时间点过期的时候,恰好这时间点对这个Key有大量的并发请求过来,这些请求发现缓存过期一般都会从后端 DB 加载数据并回设到缓存,这个时候大并发的请求可能会瞬间把 DB 压垮。
解决方案有两种方式:
-
使用互斥锁:当缓存失效时,不立即去load db,先使用如 Redis 的 setnx 去设置一个互斥锁,当操作成功返回时再进行 load db的操作并回设缓存,否则重试get缓存的方法。
-
可以设置当前key逻辑过期,大概是思路如下:
- 在设置key的时候,设置一个过期时间字段一块存入缓存中,不给当前key设置过期时间
- 当查询的时候,从redis取出数据后判断时间是否过期
- 如果过期则开通另外一个线程进行数据同步,当前线程正常返回数据,这个数据不是最新
两种方案各有利弊
- 如果选择数据的强一致性,建议使用分布式锁的方案,性能上可能没那么高,锁需要等,也有可能产生死锁的问题
- 如果选择key的逻辑删除,则优先考虑的高可用性,性能比较高,但是数据同步这块做不到强一致。
篇幅限制下面就只能给大家展示小册部分内容了。整理了一份核心面试笔记包括了:Java面试、Spring、JVM、MyBatis、Redis、MySQL、并发编程、微服务、Linux、Springboot、SpringCloud、MQ、Kafka 面试专题
需要全套面试笔记【点击此处即可】免费获取
1.5、缓存雪崩
缓存雪崩意思是设置缓存时采用了相同的过期时间,导致缓存在某一时刻同时失效,请求全部转发到DB,DB 瞬时压力过重雪崩。与缓存击穿的区别:,。
解决方案:
给不同的Key的TTL添加随机值
- 将缓存失效时间分散开,比如可以在原有的失效时间基础上增加一个随机值,比如1-5分钟随机,这样每一个缓存的过期时间的重复率就会降低,就很难引发集体失效的事件。
利用Redis集群提高服务的可用性
- 哨兵模式、集群模式
给缓存业务添加降级限流策略
- ngxin或spring cloud gateway
给业务添加多级缓存
- Guava或Caffeine
缓存三兄弟
穿透无中生有key,布隆过滤null隔离。
缓存击穿过期key, 锁与非期解难题。
雪崩大量过期key,过期时间要随机。
面试必考三兄弟,可用限流来保底。
1.6、redis做为缓存,mysql的数据如何与redis进行同步呢?(双写一致性)
双写一致: 当修改了数据库的数据也要同时更新缓存的数据,缓存和数据库的数据要保持一致
1.6.1、读操作
缓存命中,直接返回;缓存未命中查询数据库,写入缓存,设定超时时间
有脏数据风险
1.6.2、写操作:延迟双删
代码耦合性高
1.6.3、异步通知保证数据的最终一致性
1.6.4、基于Canal的异步通知
二进制日志(BINLOG)记录了所有的 DDL(数据定义语言)语句和 DML(数据操纵语言)语句,但不包括数据查询(SELECT、SHOW)语句。
1.6.5、参考回答
最近做的这个项目,里面有xxxx(根据自己的简历上写)的功能,需要让数据库与redis高度保持一致,因为要求时效性比较高,我们当时采用的读写锁保证的强一致性。
我们采用的是redisson实现的读写锁,在读的时候添加共享锁,可以保证读读不互斥,读写互斥。当我们更新数据的时候,添加排他锁,它是读写,读读都互斥,这样就能保证在写数据的同时是不会让其他线程读数据的,避免了脏数据。这里面需要注意的是读方法和写方法上需要使用同一把锁才行。
1.6.6、那这个排他锁是如何保证读写、读读互斥的呢?
其实排他锁底层使用也是setnx,保证了同时只能有一个线程操作锁住的方法
1.6.7、你听说过延时双删吗?为什么不用它呢?
延迟双删,如果是写操作,我们先把缓存中的数据删除,然后更新数据库,最后再延时删除缓存中的数据,其中这个延时多久不太好确定,在延时的过程中可能会出现脏数据,并不能保证强一致性,所以没有采用它。
1.6.8、数据同步可以有一定的延时(符合大部分业务)
我们当时采用的阿里的canal组件实现数据同步:不需要更改业务代码,部署一个canal服务。canal服务把自己伪装成mysql的一个从节点,当mysql数据更新以后,canal会读取binlog数据,然后在通过canal的客户端获取到数据,更新缓存即可。
1.7、数据持久化
在Redis中提供了两种数据持久化的方式:
RDB
- RDB是一个快照文件,它是把redis内存存储的数据写到磁盘上,当redis实例宕机恢复数据的时候,方便从RDB的快照文件中恢复数据。
AOF
- AOF的含义是追加文件,当redis操作写命令的时候,都会存储这个文件中,当redis实例宕机恢复数据的时候,会从这个文件中再次执行一遍命令来恢复数据。
1.7.1、这两种方式,哪种恢复的比较快呢?
RDB因为是二进制文件,在保存的时候体积也是比较小的,它恢复的比较快,但是它有可能会丢数据,我们通常在项目中也会使用AOF来恢复数据,虽然AOF恢复的速度慢一些,但是它丢数据的风险要小很多,在AOF文件中可以设置刷盘策略,我们当时设置的就是每秒批量写入一次命令。
1.7.2、 RDB的执行原理
bgsave开始时会fork主进程得到子进程,子进程共享主进程的内存数据。完成fork后读取内存数据并写入 RDB 文件。
fork采用的是copy-on-write技术:
- 当主进程执行读操作时,访问共享内存;
- 当主进程执行写操作时,则会拷贝一份数据,执行写操作。
1.7.3、AOF
AOF全称为Append Only File(追加文件)。Redis处理的每一个写命令都会记录在AOF文件,可以看做是命令日志文件。
AOF默认是关闭的,需要修改redis.conf配置文件来开启AOF:
AOF的命令记录的频率也可以通过redis.conf文件来配:
因为是记录命令,AOF文件会比RDB文件大的多。而且AOF会记录对同一个key的多次写操作,但只有最后一次写操作才有意义。通过执行,可以让AOF文件执行重写功能,用最少的命令达到相同效果。
Redis也会在触发阈值时自动去重写AOF文件。阈值也可以在redis.conf中配置:
1.7.4、RDB与AOF对比
RDB和AOF各有自己的优缺点,如果对数据安全性要求较高,在实际开发中往往会结合两者来使用。
1.8、假如redis的key过期之后,会立即删除吗?
Redis对数据设置数据的有效时间,数据过期以后,就需要将数据从内存中删除掉。可以按照不同的规则进行删除,这种删除规则就被称之为数据的删除策略(数据过期策略)。
1.9、Redis的数据过期策略有哪些
1.9.1、Redis数据删除策略-惰性删除
惰性删除:设置该key过期时间后,我们不去管它,当需要该key时,我们在检查其是否过期,如果过期,我们就删掉它,反之返回该key
优点 :对CPU友好,只会在使用该key时才会进行过期检查,对于很多用不到的key不用浪费时间进行过期检查
缺点 :对内存不友好,如果一个key已经过期,但是一直没有使用,那么该key就会一直存在内存中,内存永远不会释放
1.9.2、Redis数据删除策略-定期删除
定期删除:每隔一段时间,我们就对一些key进行检查,删除里面过期的key(从一定数量的数据库中取出一定数量的随机key进行检查,并删除其中的过期key)。
定期清理有两种模式:
-
SLOW模式是定时任务,执行频率默认为10hz,每次不超过25ms,以通过修改配置文件redis.conf 的hz 选项来调整这个次数
-
FAST模式执行频率不固定,但两次间隔不低于2ms,每次耗时不超过1ms
优点:可以通过限制删除操作执行的时长和频率来减少删除操作对 CPU 的影响。另外定期删除,也能有效释放过期键占用的内存。
缺点:难以确定删除操作执行的时长和频率。
Redis的过期删除策略:惰性删除 + 定期删除两种策略进行配合使用
篇幅限制下面就只能给大家展示小册部分内容了。整理了一份核心面试笔记包括了:Java面试、Spring、JVM、MyBatis、Redis、MySQL、并发编程、微服务、Linux、Springboot、SpringCloud、MQ、Kafka 面试专题
需要全套面试笔记【点击此处即可】免费获取
1.10、redis的数据淘汰策略
当Redis中的内存不够用时,此时在向Redis中添加新的key,那么Redis就会按照某一种规则将内存中的数据删除掉,这种数据的删除规则被称之为内存的淘汰策略。
Redis支持8种不同策略来选择要删除的key:
- unoeviction: 不淘汰任何key,但是内存满时不允许写入新数据,默认就是这种策略。
- uvolatile-ttl: 对设置了TTL的key,比较key的剩余TTL值,TTL越小越先被淘汰
- uallkeys-random:对全体key ,随机进行淘汰。
- uvolatile-random:对设置了TTL的key ,随机进行淘汰。
- uallkeys-lru: 对全体key,基于LRU算法进行淘汰
- uvolatile-lru: 对设置了TTL的key,基于LRU算法进行淘汰
- uallkeys-lfu: 对全体key,基于LFU算法进行淘汰
- uvolatile-lfu: 对设置了TTL的key,基于LFU算法进行淘汰
LRU(Least Recently Used)最近最少使用。用当前时间减去最后一次访问时间,这个值越大则淘汰优先级越高。
LFU(Least Frequently Used)最少频率使用。会统计每个key的访问频率,值越小淘汰优先级越高。
1.10.1、数据淘汰策略-使用建议
-
优先使用 allkeys-lru 策略。充分利用 LRU 算法的优势,把最近最常访问的数据留在缓存中。如果业务有明显的冷热数据区分,建议使用。
-
如果业务中数据访问频率差别不大,没有明显冷热数据区分,建议使用 allkeys-random,随机选择淘汰。
-
如果业务中有置顶的需求,可以使用 volatile-lru 策略,同时置顶数据不设置过期时间,这些数据就一直不被删除,会淘汰其他设置过期时间的数据。
-
如果业务中有短时高频访问的数据,可以使用 allkeys-lfu 或 volatile-lfu 策略。
1.10.2、关于数据淘汰策略其他的面试问题
-
数据库有1000万数据 ,Redis只能缓存20w数据, 如何保证Redis中的数据都是热点数据 ?
使用allkeys-lru(挑选最近最少使用的数据淘汰)淘汰策略,留下来的都是经常访问的热点数据
-
Redis的内存用完了会发生什么?
主要看数据淘汰策略是什么?如果是默认的配置( noeviction ),会直接报错。
1.11、redis分布式锁
在redis中提供了一个命令setnx(SET if not exists),由于redis的单线程的,用了命令之后,只能有一个客户端对某一个key设置值,在没有过期或删除key的时候是其他客户端是不能设置这个key的
1.11.1、如何控制Redis实现分布式锁有效时长
redis的setnx指令不好控制这个问题,我们当时采用的redis的一个框架redisson实现的。
在redisson中需要手动加锁,并且可以控制锁的失效时间和等待时间,当锁住的一个业务还没有执行完成的时候,在redisson中引入了一个看门狗机制,就是说每隔一段时间就检查当前业务是否还持有锁,如果持有就增加加锁的持有时间,当业务执行完成之后需要使用释放锁就可以了
还有一个好处就是,在高并发下,一个业务有可能会执行很快,先客户1持有锁的时候,客户2来了以后并不会马上拒绝,它会自旋不断尝试获取锁,如果客户1释放之后,客户2就可以马上持有锁,性能也得到了提升。
1.11.2、redisson实现的分布式锁是可重入的吗?
嗯,是可以重入的。这样做是为了避免死锁的产生。这个重入其实在内部就是判断是否是当前线程持有的锁,如果是当前线程持有的锁就会计数,如果释放锁就会在计算上减一。在存储数据的时候采用的hash结构,大key可以按照自己的业务进行定制,其中小key是当前线程的唯一标识,value是当前线程重入的次数。
1.11.3、redisson实现的分布式锁能解决主从一致性的问题吗
这个是不能的,比如,当线程1加锁成功后,master节点数据会异步复制到slave节点,此时当前持有Redis锁的master节点宕机,slave节点被提升为新的master节点,假如现在来了一个线程2,再次加锁,会在新的master节点上加锁成功,这个时候就会出现两个节点同时持有一把锁的问题。
我们可以利用redisson提供的红锁来解决这个问题,它的主要作用是,不能只在一个redis实例上创建锁,应该是在多个redis实例上创建锁,并且要求在大多数redis节点上都成功创建锁,红锁中要求是redis的节点数量要过半。这样就能避免线程1加锁成功后master节点宕机导致线程2成功加锁到新的master节点上的问题了。
但是,如果使用了红锁,因为需要同时在多个节点上都添加锁,性能就变的很低了,并且运维维护成本也非常高,所以,我们一般在项目中也不会直接使用红锁,并且官方也暂时废弃了这个红锁
1.11.4、如果业务非要保证数据的强一致性,这个该怎么解决呢?
redis本身就是支持高可用的,做到强一致性,就非常影响性能,所以,如果有强一致性要求高的业务,建议使用zookeeper实现的分布式锁,它是可以保证强一致性的。
1.12、Redis集群
在Redis中提供的集群方案总共有三种:主从复制、哨兵模式、Redis分片集群
1.12.1、主从复制
单节点Redis的并发能力是有上限的,要进一步提高Redis的并发能力,就需要搭建主从集群,实现读写分离。
1.12.2、主从同步原理
分为了两个阶段
- 全量同步
- 增量同步
全量同步
:简称replid,是数据集的标记,id一致则说明是同一数据集。每一个master都有唯一的replid,slave则会继承master节点的replid。
:偏移量,随着记录在repl_baklog中的数据增多而逐渐增大。slave完成同步时也会记录当前同步的offset。如果slave的offset小于master的offset,说明slave数据落后于master,需要更新。
全量同步是指从节点第一次与主节点建立连接的时候使用全量同步,流程是这样的:
-
从节点请求主节点同步数据,其中从节点会携带自己的replication id和offset偏移量。
-
主节点判断是否是第一次请求,主要判断的依据就是,主节点与从节点是否是同一个replication id,如果不是,就说明是第一次同步,那主节点就会把自己的replication id和offset发送给从节点,让从节点与主节点的信息保持一致。
-
在同时主节点会执行bgsave,生成rdb文件后,发送给从节点去执行,从节点先把自己的数据清空,然后执行主节点发送过来的rdb文件,这样就保持了一致
当然,如果在rdb生成执行期间,依然有请求到了主节点,而主节点会以命令的方式记录到缓冲区,缓冲区是一个日志文件,最后把这个日志文件发送给从节点,这样就能保证主节点与从节点完全一致了,后期再同步数据的时候,都是依赖于这个日志文件,这个就是全量同步。
篇幅限制下面就只能给大家展示小册部分内容了。整理了一份核心面试笔记包括了:Java面试、Spring、JVM、MyBatis、Redis、MySQL、并发编程、微服务、Linux、Springboot、SpringCloud、MQ、Kafka 面试专题
需要全套面试笔记【点击此处即可】免费获取
增量同步
slave重启或后期数据变化
增量同步指的是,当从节点服务重启之后,数据就不一致了,所以这个时候,从节点会请求主节点同步数据,主节点还是判断不是第一次请求,不是第一次就获取从节点的offset值,然后主节点从命令日志中获取offset值之后的数据,发送给从节点进行数据同步
1.13、哨兵
Redis提供了哨兵(Sentinel)机制来实现主从集群的自动故障恢复。哨兵的结构和作用如下:
-
监控:Sentinel 会不断检查您的master和slave是否按预期工作
-
自动故障恢复:如果master故障,Sentinel会将一个slave提升为master。当故障实例恢复后也以新的master为主
-
通知:Sentinel充当Redis客户端的服务发现来源,当集群发生故障转移时,会将最新信息推送给Redis的客户端
服务状态监控
Sentinel基于心跳机制监测服务状态,每隔1秒向集群的每个实例发送ping命令:
-
主观下线:如果某sentinel节点发现某实例未在规定时间响应,则认为该实例主观下线。
-
客观下线:若超过指定数量(quorum)的sentinel都认为该实例主观下线,则该实例客观下线。quorum值最好超过Sentinel实例数量的一半。
哨兵选主规则
- 首先判断主与从节点断开时间长短,如超过指定值就排该从节点
- 然后判断从节点的slave-priority值,越小优先级越高
- 最后是判断slave节点的运行id大小,越小优先级越高。
1.14、怎么保证Redis的高并发高可用
首先可以搭建主从集群,再加上使用redis中的哨兵模式,哨兵模式可以实现主从集群的自动故障恢复,里面就包含了对主从服务的监控、自动故障恢复、通知;如果master故障,Sentinel会将一个slave提升为master。当故障实例恢复后也以新的master为主;同时Sentinel也充当Redis客户端的服务发现来源,当集群发生故障转移时,会将最新信息推送给Redis的客户端,所以一般项目都会采用哨兵的模式来保证redis的高并发高可用
1.15、redis是单点还是集群,哪种集群
我们当时使用的是主从(1主1从)加哨兵。一般单节点不超过10G内存,如果Redis内存不足则可以给不同服务分配独立的Redis主从节点。尽量不做分片集群。因为集群维护起来比较麻烦,并且集群之间的心跳检测和数据通信会消耗大量的网络带宽,也没有办法使用lua脚本和事务。
1.16、redis集群脑裂,该怎么解决呢?
这个在项目很少见,不过脑裂的问题是这样的,我们现在用的是redis的哨兵模式集群的
有的时候由于网络等原因可能会出现脑裂的情况,就是说,由于redis master节点和redis salve节点和sentinel处于不同的网络分区,使得sentinel没有能够心跳感知到master,所以通过选举的方式提升了一个salve为master,这样就存在了两个master,就像大脑分裂了一样,这样会导致客户端还在old master那里写入数据,新节点无法同步数据,当网络恢复后,sentinel会将old master降为salve,这时再从新master同步数据,这会导致old master中的大量数据丢失。
解决方式,在redis配置中设置
- 设置最少的salve节点个数,比如设置至少要有一个从节点才能同步数据,
- 设置主从数据复制和同步的延迟时间,达不到要求就拒绝请求,就可以避免大量的数据丢失。
1.17、分片集群结构
主从和哨兵可以解决高可用、高并发读的问题。但是依然有两个问题没有解决:
- 海量数据存储问题
- 高并发写的问题
使用分片集群可以解决上述问题,分片集群特征:
- 集群中有多个master,每个master保存不同数据
- 每个master都可以有多个slave节点
- master之间通过ping监测彼此健康状态
- 客户端请求可以访问集群任意节点,最终都会被转发到正确节点
篇幅限制下面就只能给大家展示小册部分内容了。整理了一份核心面试笔记包括了:Java面试、Spring、JVM、MyBatis、Redis、MySQL、并发编程、微服务、Linux、Springboot、SpringCloud、MQ、Kafka 面试专题
需要全套面试笔记【点击此处即可】免费获取
1.17.1、 redis的分片集群有什么作用
分片集群主要解决的是,海量数据存储的问题,集群中有多个master,每个master保存不同数据,并且还可以给每个master设置多个slave节点,就可以继续增大集群的高并发能力。同时每个master之间通过ping监测彼此健康状态,就类似于哨兵模式了。当客户端请求可以访问集群任意节点,最终都会被转发到正确节点
1.17.2、 Redis分片集群中数据是怎么存储和读取的?
Redis 集群引入了哈希槽的概念,有 16384 个哈希槽,集群中每个主节点绑定了一定范围的哈希槽范围, key通过 CRC16 校验后对 16384 取模来决定放置哪个槽,通过槽找到对应的节点进行存储。
取值的逻辑是一样的
1.18、Redis是单线程的,但是为什么还那么快?
-
完全基于内存的,C语言编写
-
采用单线程,避免不必要的上下文切换可竞争条件
-
使用多路I/O复用模型,非阻塞IO
例如:bgsave 和 bgrewriteaof 都是在后台执行操作,不影响主线程的正常使用,不会产生阻塞
1.19、能解释一下I/O多路复用模型?
I/O多路复用是指利用单个线程来同时监听多个Socket ,并在某个Socket可读、可写时得到通知,从而避免无效的等待,充分利用CPU资源。目前的I/O多路复用都是采用的epoll模式实现,它会在通知用户进程Socket就绪的同时,把已就绪的Socket写入用户空间,不需要挨个遍历Socket来判断是否就绪,提升了性能。
其中Redis的网络模型就是使用I/O多路复用结合事件的处理器来应对多个Socket请求,比如,提供了连接应答处理器、命令回复处理器,命令请求处理器;
在Redis6.0之后,为了提升更好的性能,在命令回复处理器使用了多线程来处理回复事件,在命令请求处理器中,将命令的转换使用了多线程,增加命令转换速度,在命令执行的时候,依然是单线程。
例如:bgsave 和 bgrewriteaof 都是在后台执行操作,不影响主线程的正常使用,不会产生阻塞
2.1、MySQL中,如何定位慢查询?
方案一:开源工具
-
调试工具:Arthas
-
运维工具:Prometheus 、Skywalking
方案二:MySQL自带慢日志
慢查询日志记录了所有执行时间超过指定参数(long_query_time,单位:秒,默认10秒)的所有SQL语句的日志。
如果要开启慢查询日志,需要在MySQL的配置文件(/etc/my.cnf)中配置如下信息:
配置完毕之后,通过以下指令重新启动MySQL服务器进行测试,查看慢日志文件中记录的信息 /var/lib/mysql/localhost-slow.log。
2.2、一个SQL语句执行很慢, 如何分析
可以采用或者命令获取 MySQL 如何执行 SELECT 语句的信息
语法
- 1
- 2
-
possible_key 当前sql可能会使用到的索引
-
key 当前sql实际命中的索引
-
key_len 索引占用的大小
-
Extra 额外的优化建议
- type 这条sql的连接的类型,性能由好到差为NULL、system、const、eq_ref、ref、range、 index、all
- system:查询系统中的表
- const:根据主键查询
- eq_ref:主键索引查询或唯一索引查询
- ref:索引查询
- range:范围查询
- index:索引树扫描
- all:全盘扫描
参考回答
可以采用MySQL自带的分析工具 EXPLAIN
-
通过key和key_len检查是否命中了索引(索引本身存在是否有失效的情况)
-
通过type字段查看sql是否有进一步的优化空间,是否存在全索引扫描或全盘扫描
-
通过extra建议判断,是否出现了回表的情况,如果出现了,可以尝试添加索引或修改返回字段来修复
2.3、MYSQL支持的存储引擎有哪些, 有什么区别 ?
存储引擎就是存储数据、建立索引、更新/查询数据等技术的实现方式 。存储引擎是基于表的,而不是基于库的,所以存储引擎也可被称为表类型。
在mysql中提供了很多的存储引擎,比较常见有InnoDB、MyISAM、Memory
- InnoDB存储引擎是mysql5.5之后是默认的引擎,它支持事务、外键、表级锁和行级锁
- MyISAM是早期的引擎,它不支持事务、只有表级锁、也没有外键,用的不多
- Memory主要把数据存储在内存,支持表级锁,没有外键和事务,用的也不多
2.4、存储引擎在mysql的体系结构哪一层,主要特点是什么
2.4.1、MySQL体系结构
篇幅限制下面就只能给大家展示小册部分内容了。整理了一份核心面试笔记包括了:Java面试、Spring、JVM、MyBatis、Redis、MySQL、并发编程、微服务、Linux、Springboot、SpringCloud、MQ、Kafka 面试专题
需要全套面试笔记【点击此处即可】免费获取
2.4.2、存储引擎特点
InnoDB是一种兼顾高可靠性和高性能的通用存储引擎,在 MySQL 5.5 之后,InnoDB是默认的MySQL存储引擎。
特点
- DML操作遵循ACID模型,支持事务。
- 行级锁,提高并发访问性能。
- 支持外键,FOREIGN KEY约束,保证数据的完整性和正确性。
文件
- xxx.ibd:xxx代表的是表名,innoDB引擎的每张表都会对应这样一个表空间文件,存储该表的表结构(frm、sdi)、数据和索引。
- xxx.frm 存储表结构(MySQL8.0时,合并在表名.ibd中)
2.5、什么是索引
索引在项目中还是比较常见的,它是帮助MySQL高效获取数据的数据结构,主要是用来提高数据检索的效率,降低数据库的IO成本,同时通过索引列对数据进行排序,降低数据排序的成本,也能降低了CPU的消耗。
2.6、索引的底层数据结构了解过嘛 ?
MySQL的默认的存储引擎InnoDB采用的B+树的数据结构来存储索引,选择B+树的主要的原因是:
- 阶数更多,路径更短,
- 磁盘读写代价B+树更低,非叶子节点只存储指针,叶子阶段存储数据,
- B+树便于扫库和区间查询,叶子节点是一个双向链表。
2.7、B树和B+树的区别
- 在B树中,非叶子节点和叶子节点都会存放数据,而B+树的所有的数据都会出现在叶子节点,在查询的时候,B+树查找效率更加稳定
- 在进行范围查询的时候,B+树效率更高,因为B+树都在叶子节点存储,并且叶子节点是一个双向链表。
B-Tree,B树是一种多叉路衡查找树,相对于二叉树,B树每个节点可以有多个分支,即多叉。
以一颗最大度数(max-degree)为5(5阶)的b-tree为例,那这个B树每个节点最多存储4个key
B+Tree是在BTree基础上的一种优化,使其更适合实现外存储索引结构,InnoDB存储引擎就是用B+Tree实现其索引结构
B树与B+树对比:
- 磁盘读写代价B+树更低
- 查询效率B+树更加稳定
- B+树便于扫库和区间查询
2.8、什么是聚簇索引什么是非聚簇索引 ?
聚集索引选取规则:
- 如果存在主键,主键索引就是聚集索引。
- 如果不存在主键,将使用第一个唯一(UNIQUE)索引作为聚集索引。
- 如果表没有主键,或没有合适的唯一索引,则InnoDB会自动生成一个rowid作为隐藏的聚集索引。
2.9、什么是回表查询
其实跟刚才介绍的聚簇索引和非聚簇索引是有关系的,回表的意思就是通过二级索引找到对应的主键值,然后再通过主键值找到聚集索引中所对应的整行数据,这个过程就是回表
备注:直接问回表,则需要先介绍聚簇索引和非聚簇索引
2.10、什么叫覆盖索引
覆盖索引是指查询使用了索引,并且需要返回的列,在该索引中已经全部能够找到 。
- id为主键,默认是主键索引
- name字段为普通索引
覆盖索引是指select查询语句使用了索引,在返回的列,必须在索引中全部能够找到,如果我们使用id查询,它会直接走聚集索引查询,一次索引扫描,直接返回数据,性能高。
如果按照二级索引查询数据的时候,返回的列中没有创建索引,有可能会触发回表查询,尽量避免使用select *,尽量在返回的列中都包含添加索引的字段
2.11、MYSQL超大分页处理
优化思路: 一般分页查询时,通过创建能够比较好地提高性能,可以通过覆盖索引加子查询形式进行优化
2.12、索引创建原则有哪些?
- 针对于数据量较大,且查询比较频繁的表建立索引。
- 针对于常作为查询条件(where)、排序(order by)、分组(group by)操作的字段建立索引。
- 尽量选择区分度高的列作为索引,尽量建立唯一索引,区分度越高,使用索引的效率越高。
- 如果是字符串类型的字段,字段的长度较长,可以针对于字段的特点,建立前缀索引。
- 尽量使用联合索引,减少单列索引,查询时,联合索引很多时候可以覆盖索引,节省存储空间,避免回表,提高查询效率。
- 要控制索引的数量,索引并不是多多益善,索引越多,维护索引结构的代价也就越大,会影响增删改的效率。
- 如果索引列不能存储NULL值,请在创建表时使用NOT NULL约束它。当优化器知道每列是否包含NULL值时,它可以更好地确定哪个索引最有效地用于查询。
篇幅限制下面就只能给大家展示小册部分内容了。整理了一份核心面试笔记包括了:Java面试、Spring、JVM、MyBatis、Redis、MySQL、并发编程、微服务、Linux、Springboot、SpringCloud、MQ、Kafka 面试专题
需要全套面试笔记【点击此处即可】免费获取
2.13、什么情况下索引会失效
-
违反最左前缀法则
如果索引了多列,要遵守最左前缀法则。指的是查询从索引的最左前列开始,并且不跳过索引中的列。匹配最左前缀法则,走索引。
-
范围查询右边的列,不能使用索引 。
-
不要在索引列上进行运算操作, 索引将失效。
-
字符串不加单引号,造成索引失效(类型转换)。
-
以%开头的Like模糊查询,索引失效。如果仅仅是尾部模糊匹配,索引不会失效。如果是头部模糊匹配,索引失效。
2.14、sql的优化的经验
- 表的设计优化
- 索引优化
- SQL语句优化
- 主从复制、读写分离
- 分库分表
2.14.1、表的设计优化(参考阿里开发手册《嵩山版》)
- 比如设置合适的数值(tinyint int bigint),要根据实际情况选择
- 比如设置合适的字符串类型(char和varchar)char定长效率高,varchar可变长度,效率稍低。
2.14.2、SQL语句优化
- SELECT语句务必指明字段名称(避免直接使用select * )
- SQL语句要避免造成索引失效的写法
- 尽量用union all代替union union会多一次过滤,效率低
- 避免在where子句中对字段进行表达式操作
- Join优化 能用innerjoin 就不用left join right join,如必须使用 一定要以小表为驱动,内连接会对两个表进行优化,优先把小表放到外边,把大表放到里边。left join 或 right join,不会重新调整顺序
篇幅限制下面就只能给大家展示小册部分内容了。整理了一份核心面试笔记包括了:Java面试、Spring、JVM、MyBatis、Redis、MySQL、并发编程、微服务、Linux、Springboot、SpringCloud、MQ、Kafka 面试专题
需要全套面试笔记【点击此处即可】免费获取
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。
如需转载请保留出处:https://bianchenghao.cn/bian-cheng-ri-ji/28736.html