索引是 mysql 非常重要的一部分。你也可能经常会看到一些关于 mysql 军规、mysql 查询优化的文章,其实这些操作的背后都是基于一定的原理的,你要想明白这些原理,首先就得知道 mysql 底层的一些东西。
在这里举几个例子吧。
我们都知道表的主键一般都要使用自增 id,不建议使用业务 id ,是因为使用自增 id 可以避免页分裂。这个其实可以相当于一个结论,你都可以直接记住这个结论就可以了。
但是如果你要弄明白什么是页分裂,或者什么情况下会页分裂,这个时候你就需要对 mysql 的底层数据结构要有一定的理解了。
我这里也稍微解释一下页分裂,mysql (注意本文讲的 mysql 默认为InnoDB 引擎)底层数据结构是 B+ 树,所谓的索引其实就是一颗 B+ 树,一个表有多少个索引就会有多少颗 B+ 树,mysql 中的数据都是按顺序保存在 B+ 树上的(所以说索引本身是有序的)。
然后 mysql 在底层又是以数据页为单位来存储数据的,一个数据页大小默认为 16k,当然你也可以自定义大小,也就是说如果一个数据页存满了,mysql 就会去申请一个新的数据页来存储数据。
如果主键为自增 id 的话,mysql 在写满一个数据页的时候,直接申请另一个新数据页接着写就可以了。
如果主键是非自增 id,为了确保索引有序,mysql 就需要将每次插入的数据都放到合适的位置上。
当往一个快满或已满的数据页中插入数据时,新插入的数据会将数据页写满,mysql 就需要申请新的数据页,并且把上个数据页中的部分数据挪到新的数据页上。
这就造成了页分裂,这个大量移动数据的过程是会严重影响插入效率的。
其实对主键 id 还有一个小小的要求,在满足业务需求的情况下,尽量使用占空间更小的主键 id,因为普通索引的叶子节点上保存的是主键 id 的值,如果主键 id 占空间较大的话,那将会成倍增加 mysql 空间占用大小
我之前甚至想过为啥要用数据库来保存数据,用普通的 txt 或者 word 这类文件不行么,这个问题其实可以从几个方面来看,一个是并发访问数据加锁,另一个是数据安全性,再一个是数据的查询性能问题。
这三个方面在 mysql 中都有对应的解决方案,比如事务、锁、日志系统(binlog、redolog 等)、索引。
为了实现高效查询,就得找到一种合适的数据结构来保存数据。首先我们可以想到使用哈希表,哈希表能通过键值快速找到对应的值,但是因为哈希是无序的,一般更适用于等值查询,
但实际业务中通过会有大量的区间查询,比如查询 id 在 1-100 间的值,使用哈希的话效率就会大打折扣了。
那么就要找到一种既能满足等值查询,又能满足区间查询的数据结构了,又会很容易想到数组。数组可以通过下标快速找到对应的值,因为数组下标是有序的,所以通过遍历下标就能很高效的完成区间查询。
但是数组也有一个严重的问题,就是在删除或者插入数据的时候可能会移动大量其他数据,这是一个很大的性能消耗,所以数组一般更适合保存静态数据,比如一些历史数据,确定不会再更新的数据。
再一个就是二叉搜索树了,二叉搜索树的查找效率比较高,而且二叉搜索树的中序遍历就是一个有序数组,但依然不能很好的支持区间查询。
所以可以对二叉搜索树进行改造,树的节点不再保存具体数据,而是保存索引值,数据保存在最底层的叶子节点上,同时叶子节点间使用双链表连接起来,这样只需要先找到区间起始值的位置,然后往后遍历到终止值,即可完成区间查询。
事实上 mysql 底层采用的 B+ 树也就是这么一步步演变过来的,关于 B+ 树的详细介绍可以参考我前面的文章。
另外说一点,mysql 中有一个非常重要的模块,就是优化器,优化器的主要任务就是寻找一种更低代价方式去执行方式,通常会以扫描行数、是否需要排序、是否需要回表、是否需要临时表等来作为代价依据。
所以通常同一条 sql 在不同数据量的情况下执行情况可能会不一样,或者明明为某些 where 字段建立了索引,查询的时候偏偏又不走索引,这些情况其实都是经过优化器分析后作出的选择。因此你要知道,一条 sql 最终该怎么执行,还得看是在什么样的场景。
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。
如需转载请保留出处:https://bianchenghao.cn/bian-cheng-ri-ji/29375.html