第二点,激活函数的偏移现象。sigmoid函数的输出值均大于0,使得输出不是0的均值,这会导致后一层的神经元将得到上一层非0均值的信号作为输入,这会对梯度产生影响。。
第三点,计算复杂度高,因为sigmoid函数是指数形式。
sigmod 求导过程很简单,可以手动推导。
softmax函数,又称归一化指数函数。它是二分类函数sigmoid在多分类上的推广,目的是将多分类的结果以概率的形式展现出来。下图展示了softmax的计算方法:
下面这张图便于理解:
由于Softmax函数先拉大了输入向量元素之间的差异(通过指数函数),然后才归一化为一个概率分布,在应用到分类问题时,它使得各个类别的概率差异比较显著,最大值产生的概率更接近1,这样输出分布的形式更接近真实分布。
Softmax可以由三个不同的角度来解释。从不同角度来看softmax函数,可以对其应用场景有更深刻的理解。
2.2.1 是arg max的一种平滑近似
softmax可以当作arg max的一种平滑近似,与arg max操作中暴力地选出一个最大值(产生一个one-hot向量)不同,softmax将这种输出作了一定的平滑,即将one-hot输出中最大值对应的1按输入元素值的大小分配给其他位置。2.2.2 归一化产生一个概率分布
Softmax函数的输出符合指数分布族的基本形式
其中 。
不难理解,softmax将输入向量归一化映射到一个类别概率分布,即 个类别上的概率分布(前文也有提到)。这也是为什么在深度学习中常常将softmax作为MLP的最后一层,并配合以交叉熵损失函数(对分布间差异的一种度量)。
2.2.3 产生概率无向图的联合概率
从概率图模型的角度来看,softmax的这种形式可以理解为一个概率无向图上的联合概率。因此你会发现,条件最大熵模型与softmax回归模型实际上是一致的,诸如这样的例子还有很多。由于概率图模型很大程度上借用了一些热力学系统的理论,因此也可以从物理系统的角度赋予softmax一定的内涵。• 如果模型输出为非互斥类别,且可以同时选择多个类别,则采用Sigmoid函数计算该网络的原始输出值。
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。
如需转载请保留出处:https://bianchenghao.cn/bian-cheng-ri-ji/49962.html