Hsql函数下_sql nvl函数

Hsql函数下_sql nvl函数文章目录 Hsql 函数 下 窗口函数 分析函数 增强 group 1 窗口函数与分析函数 1 1 窗口函数 1 2 OVER 从句 1 3 分析函数 1 3 1 Hive2 1 0 及以后支持 Distinct 1 3 2 Hive2 2 0 中在使用 ORDER BY 和窗口限制是支持 distinct 1 3 3 Hive2 1 0 及以后支持在 OVER 从句中支持聚合函数 1 4 测试练习 2

文章目录

Hsql函数.下(窗口函数、分析函数、增强group)

1.窗口函数与分析函数

1.1、**窗口函数**

1.2、OVER从句

1.3、分析函数

1.3.1、Hive2.1.0及以后支持Distinct

1.3.2、Hive2.2.0中在使用ORDER BY和窗口限制是支持distinct

1.3.3、Hive2.1.0及以后支持在OVER从句中支持聚合函数

1.4、测试练习

2.**增强的聚合 Cube和Grouping 和Rollup**

2.1、grouping sets

2.2、**CUBE**

2.3、rollup

Hsql函数.下(窗口函数、分析函数、增强group)

参考链接:https://blog.csdn.net/scgaliguodong123_/article/details/60135385

1.窗口函数与分析函数

应用场景:
(1)用于分区排序
(2)动态Group By
(3)Top N
(4)累计计算
(5)层次查询

1.1、窗口函数

FIRST_VALUE:取分组内排序后,截止到当前行,第一个值

LAST_VALUE: 取分组内排序后,截止到当前行,最后一个值

LEAD(col,n,DEFAULT) :用于统计窗口内往下第n行值。第一个参数为列名,第二个参数为往下第n行(可选,默认为1),第三个参数为默认值(当往下第n行为NULL时候,取默认值,如不指定,则为NULL)

LAG(col,n,DEFAULT) :与lead相反,用于统计窗口内往上第n行值。第一个参数为列名,第二个参数为往上第n行(可选,默认为1),第三个参数为默认值(当往上第n行为NULL时候,取默认值,如不指定,则为NULL)

1.2、OVER从句

1、使用标准的聚合函数COUNT、SUM、MIN、MAX、AVG
2、使用PARTITION BY语句,使用一个或者多个原始数据类型的列
3、使用PARTITION BY与ORDER BY语句,使用一个或者多个数据类型的分区或者排序列
4、使用窗口规范,窗口规范支持以下格式:

(ROWS | RANGE) BETWEEN (UNBOUNDED | [num]) PRECEDING AND ([num] PRECEDING | CURRENT ROW | (UNBOUNDED | [num]) FOLLOWING)
(ROWS | RANGE) BETWEEN CURRENT ROW AND (CURRENT ROW | (UNBOUNDED | [num]) FOLLOWING)
(ROWS | RANGE) BETWEEN [num] FOLLOWING AND (UNBOUNDED | [num]) FOLLOWING

当ORDER BY后面缺少窗口从句条件,窗口规范默认是 RANGE BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW.

当ORDER BY和窗口从句都缺失, 窗口规范默认是 ROW BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING.

OVER从句支持以下函数, 但是并不支持和窗口一起使用它们。
Ranking函数: Rank, NTile, DenseRank, CumeDist, PercentRank.
Lead 和 Lag 函数.

over语句还可以独立出来,用window重写,但需要注意的是,如下sort by使用了多个字段,如果用range指定窗口的话会出错,需要用rows来指定窗口,因为range是对列的比较,不支持多列比较

1.3、分析函数

ROW_NUMBER() 从1开始,按照顺序,生成分组内记录的序列,比如,按照pv降序排列,生成分组内每天的pv名次,ROW_NUMBER()的应用场景非常多,再比如,获取分组内排序第一的记录;获取一个session中的第一条refer等。

RANK() 生成数据项在分组中的排名,排名相等会在名次中留下空位

DENSE_RANK() 生成数据项在分组中的排名,排名相等会在名次中不会留下空位

CUME_DIST 小于等于当前值的行数/分组内总行数。比如,统计小于等于当前薪水的人数,所占总人数的比例

PERCENT_RANK 分组内当前行的RANK值-1/分组内总行数-1

NTILE(n) 用于将分组数据按照顺序切分成n片,返回当前切片值,如果切片不均匀,默认增加第一个切片的分布。NTILE不支持ROWS BETWEEN,比如 NTILE(2) OVER(PARTITION BY cookieid ORDER BY createtime ROWS BETWEEN 3 PRECEDING AND CURRENT ROW)。

1.3.1、Hive2.1.0及以后支持Distinct

在聚合函数(SUM、COUNT and AVG)中,支持distinct,但是在ORDER by或者窗口限制不支持

count(distinct a) over (partition by c)
1.3.2、Hive2.2.0中在使用ORDER BY和窗口限制是支持distinct
COUNT(DISTINCT a) OVER (PARTITION BY c ORDER BY d ROWS BETWEEN 1 PRECEDING AND 1 FOLLOWING)
1.3.3、Hive2.1.0及以后支持在OVER从句中支持聚合函数
SELECT rank() OVER (ORDER BY sum(b))
FROM T
GROUP BY a;
1.4、测试练习

注意:
结果和ORDER BY相关,默认为升序
如果不指定ROWS BETWEEN,默认为从起点到当前行;
如果不指定ORDER BY,则将分组内所有值累加;

关键是理解ROWS BETWEEN含义,也叫做WINDOW子句:
PRECEDING:往前
FOLLOWING:往后
CURRENT ROW:当前行
UNBOUNDED:无界限(起点或终点)
UNBOUNDED PRECEDING:表示从前面的起点
UNBOUNDED FOLLOWING:表示到后面的终点
其他COUNT、AVG,MIN,MAX,和SUM用法一样。

-- count、sum、min、max、avg
select
user_id,
user_type,
sales,
--默认为从起点到当前行,sales相等的是不分先后顺序的,所以第一个值为2,还有17=5+5+7
sum(sales) OVER(PARTITION BY user_type ORDER BY sales asc) AS sales_1,
--从起点到当前行,结果与sales_1不同。像这种情况,就是有序的,即1,2,4,7,12,17,23;
sum(sales) OVER(PARTITION BY user_type ORDER BY sales asc ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW) AS sales_2,
--当前行+往前3行
sum(sales) OVER(PARTITION BY user_type ORDER BY sales asc ROWS BETWEEN 3 PRECEDING AND CURRENT ROW) AS sales_3,
--当前行+往前3行+往后1行
sum(sales) OVER(PARTITION BY user_type ORDER BY sales asc ROWS BETWEEN 3 PRECEDING AND 1 FOLLOWING) AS sales_4,
--当前行+往后所有行
sum(sales) OVER(PARTITION BY user_type ORDER BY sales asc ROWS BETWEEN CURRENT ROW AND UNBOUNDED FOLLOWING) AS sales_5,
--分组内所有行
SUM(sales) OVER(PARTITION BY user_type) AS sales_6
from
order_detail
order by
user_type,
sales,
user_id;

first_value与last_value

select 
user_id,
user_type,
ROW_NUMBER() OVER(PARTITION BY user_type ORDER BY sales) AS row_num,
first_value(user_id) over (partition by user_type order by sales desc) as max_sales_user,
first_value(user_id) over (partition by user_type order by sales asc) as min_sales_user,
last_value(user_id) over (partition by user_type order by sales desc) as curr_last_min_user,
last_value(user_id) over (partition by user_type order by sales asc) as curr_last_max_user
from
order_detail;

图片

lead与lag

lag(field, N)是取前N行的值,lead(field, N)是取后N行的值。

select 
user_id,device_id,sales,
lead(device_id) over (order by sales) as default_after_one_line,
lag(device_id) over (order by sales) as default_before_one_line,
lead(device_id,2) over (order by sales) as after_two_line,
lag(device_id,2,'abc') over (order by sales) as before_two_line
from
order_detail;
| user_id | device_id | default_after_one_line | default_before_one_line | after_two_line | before_two_line |
+----------+-------------+-------------------------+--------------------------+-----------------+------------------+--+
| qibaqiu | fds | fdsfagwe | NULL | 543gfd | abc |
| liiu | fdsfagwe | 543gfd | fds | f332 | abc |
| lisi | 543gfd | f332 | fdsfagwe | dfsadsa323 | fds |
| wangshi | f332 | dfsadsa323 | 543gfd | hfd | fdsfagwe |
| zhangsa | dfsadsa323 | hfd | f332 | 65ghf | 543gfd |
| liwei | hfd | 65ghf | dfsadsa323 | fds | f332 |
| wanger | 65ghf | fds | hfd | dsfgg | dfsadsa323 |
| qishili | fds | dsfgg | 65ghf | 543gdfsd | hfd |
| lilisi | dsfgg | 543gdfsd | fds | NULL | 65ghf |
| wutong | 543gdfsd | NULL | dsfgg | NULL | fds |
+----------+-------------+-------------------------+--------------------------

rank、row_number、dense_rank

dense_rank和rank都是排名函数,区别在于dense_rank是连续排名,rank遇到排名并列时,下一列排名跳空。

percent_rank,介于0和1直接的小数形式表示,计算方法是(rank – 1) / (n-1),其中rank为行的序号,n为组的行数

select 
user_id,user_type,sales,
RANK() over (partition by user_type order by sales desc) as r,
ROW_NUMBER() over (partition by user_type order by sales desc) as rn,
DENSE_RANK() over (partition by user_type order by sales desc) as dr
from
order_detail;
| user_id | user_type | sales | r | rn | dr |
+----------+------------+--------+----+-----+-----+--+
| wutong | new | 6 | 1 | 1 | 1 |
| qishili | new | 5 | 2 | 2 | 2 |
| lilisi | new | 5 | 2 | 3 | 2 |
| wanger | new | 3 | 4 | 4 | 3 |
| zhangsa | new | 2 | 5 | 5 | 4 |
| qibaqiu | new | 1 | 6 | 6 | 5 |
| liiu | new | 1 | 6 | 7 | 5 |
| liwei | old | 3 | 1 | 1 | 1 |
| wangshi | old | 2 | 2 | 2 | 2 |
| lisi | old | 1 | 3 | 3 | 3 |

ntile

NTILE这个很强大,以前要获取一定比例的数据是非常困难的,NTILE就是把有序分区中的行分发到指定数据的组中,各个组有编号,编号从1开始,对于每一行,NTILE返回此行所属的组的编号。

select 
user_type,sales,
--分组内将数据分成2片
NTILE(2) OVER(PARTITION BY user_type ORDER BY sales) AS nt2,
--分组内将数据分成3片
NTILE(3) OVER(PARTITION BY user_type ORDER BY sales) AS nt3,
--分组内将数据分成4片
NTILE(4) OVER(PARTITION BY user_type ORDER BY sales) AS nt4,
--将所有数据分成4片
NTILE(4) OVER(ORDER BY sales) AS all_nt4
from
order_detail
order by
user_type,
sales

求取sale前20%的用户ID

select
user_id
from
(
select
user_id,
NTILE(5) OVER(ORDER BY sales desc) AS nt
from
order_detail
)A
where nt=1;
--wutong
--qishili

CUME_DIST、PERCENT_RANK

select 
user_id,user_type,sales,
--没有partition,所有数据均为1组
CUME_DIST() OVER(ORDER BY sales) AS cd1,
--按照user_type进行分组
CUME_DIST() OVER(PARTITION BY user_type ORDER BY sales) AS cd2
from
order_detail;

图片

select 
user_type,sales,
--分组内总行数
SUM(1) OVER(PARTITION BY user_type) AS s,
--RANK值
RANK() OVER(ORDER BY sales) AS r,
PERCENT_RANK() OVER(ORDER BY sales) AS pr,
--分组内
PERCENT_RANK() OVER(PARTITION BY user_type ORDER BY sales) AS prg
from
order_detail;

2.增强的聚合 Cube和Grouping 和Rollup

这几个分析函数通常用于OLAP中,不能累加,而且需要根据不同维度上钻和下钻的指标统计,比如,分小时、天、月的UV数。

2.1、grouping sets

在一个GROUP BY查询中,根据不同的维度组合进行聚合,等价于将不同维度的GROUP BY结果集进行UNION ALL,

其中的GROUPING__ID,表示结果属于哪一个分组集合

select
user_type,
sales,
count(user_id) as pv,
GROUPING__ID
from
order_detail
group by
user_type,sales
GROUPING SETS(user_type,sales)
ORDER BY
GROUPING__ID;

图片

select
user_type,
sales,
count(user_id) as pv,
GROUPING__ID
from
order_detail
group by
user_type,sales
GROUPING SETS(user_type,sales,(user_type,sales))
ORDER BY
GROUPING__ID;

图片

2.2、CUBE

根据GROUP BY的维度的所有组合进行聚合。

select
user_type,
sales,
count(user_id) as pv,
GROUPING__ID
from
order_detail
group by
user_type,sales
WITH CUBE
ORDER BY
GROUPING__ID;

图片

2.3、rollup

是CUBE的子集,以最左侧的维度为主,从该维度进行层级聚合。

select
user_type,
sales,
count(user_id) as pv,
GROUPING__ID
from
order_detail
group by
user_type,sales
WITH ROLLUP
ORDER BY
GROUPING__ID;
user_type,sales
WITH CUBE
ORDER BY
GROUPING__ID;

图片

编程小号
上一篇 2025-01-24 15:33
下一篇 2025-01-29 17:30

相关推荐

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。
如需转载请保留出处:https://bianchenghao.cn/hz/118539.html