python lasso回归分析_解析python实现Lasso回归「建议收藏」

python lasso回归分析_解析python实现Lasso回归「建议收藏」Lasso 原理 Lasso 与弹性拟合比较 python 实现 import numpy as np import matplotlib pyplot as plt from sklearn metrics import r2 score def main 产生一些稀疏数据 np random seed 42 n samples n features 50 200 X np

Lasso原理

Lasso与弹性拟合比较python实现

import numpy as np

import matplotlib.pyplot as plt

from sklearn.metrics import r2_score

#def main():

# 产生一些稀疏数据

np.random.seed(42)

n_samples, n_features = 50, 200

X = np.random.randn(n_samples, n_features) # randn(…)产生的是正态分布的数据

coef = 3 * np.random.randn(n_features) # 每个特征对应一个系数

inds = np.arange(n_features)

np.random.shuffle(inds)

coef[inds[10:]] = 0 # 稀疏化系数–随机的把系数向量1×200的其中10个值变为0

y = np.dot(X, coef) # 线性运算 — y = X.*w

# 添加噪声:零均值,标准差为 0.01 的高斯噪声

y += 0.01 * np.random.normal(size=n_samples)

# 把数据划分成训练集和测试集

n_samples = X.shape[0]

X_train, y_train = X[:n_samples // 2], y[:n_samples // 2]

X_test, y_test = X[n_samples // 2:], y[n_samples // 2:]

# 训练 Lasso 模型

from sklearn.linear_model import Lasso

alpha = 0.1

lasso = Lasso(alpha=alpha)

y_pred_lasso = lasso.fit(X_train, y_train).predict(X_test)

r2_score_lasso = r2_score(y_test, y_pred_lasso)

print(lasso)

print(“r^2 on test data : %f” % r2_score_lasso)

# 训练 ElasticNet 模型

from sklearn.linear_model import ElasticNet

enet = ElasticNet(alpha=alpha, l1_ratio=0.7)

y_pred_enet = enet.fit(X_train, y_train).predict(X_test)

r2_score_enet = r2_score(y_test, y_pred_enet)

print(enet)

print(“r^2 on test data : %f” % r2_score_enet)

plt.plot(enet.coef_, color=’lightgreen’, linewidth=2,

label=’Elastic net coefficients’)

plt.plot(lasso.coef_, color=’gold’, linewidth=2,

label=’Lasso coefficients’)

plt.plot(coef, ‘–‘, color=’navy’, label=’original coefficients’)

plt.legend(loc=’best’)

plt.title(“Lasso R^2: %f, Elastic Net R^2: %f”

% (r2_score_lasso, r2_score_enet))

plt.show()

总结

以上所述是小编给大家介绍的python实现Lasso回归,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对网站的支持!

如果你觉得本文对你有帮助,欢迎转载,烦请注明出处,谢谢!

编程小号
上一篇 2025-03-01 11:46
下一篇 2025-03-19 20:51

相关推荐

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。
如需转载请保留出处:https://bianchenghao.cn/hz/121092.html