Python fillna_pandas fillna 指定列

Python fillna_pandas fillna 指定列对我来说工作 df ix df Type Dog Killed df ix df Type Dog Killed fillna 2 25 print df Type Killed Survived 0 Dog 5 00 2 1 Dog 3 00 4 2 Cat 1 00 7 3 Dog 2 25 3 4 cow NaN 2

对我来说工作:

df.ix[df[‘Type’] == ‘Dog’, ‘Killed’] = df.ix[df[‘Type’] == ‘Dog’, ‘Killed’].fillna(2.25)

print (df)

Type Killed Survived

0 Dog 5.00 2

1 Dog 3.00 4

2 Cat 1.00 7

3 Dog 2.25 3

4 cow NaN 2

如果系列需要fillna – 因为2列被杀和幸存:

m = df[df[‘Type’] == ‘Dog’].mean().round()

print (m)

Killed 4.0

Survived 3.0

dtype: float64

df.ix[df[‘Type’] == ‘Dog’] = df.ix[df[‘Type’] == ‘Dog’].fillna(m)

print (df)

Type Killed Survived

0 Dog 5.0 2

1 Dog 3.0 4

2 Cat 1.0 7

3 Dog 4.0 3

4 cow NaN 2

如果需要fillna只在Killed列中:

#if dont need rounding, omit it

m = round(df.ix[df[‘Type’] == ‘Dog’, ‘Killed’].mean())

print (m)

4

df.ix[df[‘Type’] == ‘Dog’, ‘Killed’] = df.ix[df[‘Type’] == ‘Dog’, ‘Killed’].fillna(m)

print (df)

Type Killed Survived

0 Dog 5.0 2

1 Dog 3.0 8

2 Cat 1.0 7

3 Dog 4.0 3

4 cow NaN 2

您可以重用以下代码:

filtered = df.ix[df[‘Type’] == ‘Dog’, ‘Killed’]

print (filtered)

0 5.0

1 3.0

3 NaN

Name: Killed, dtype: float64

df.ix[df[‘Type’] == ‘Dog’, ‘Killed’] = filtered.fillna(filtered.mean())

print (df)

Type Killed Survived

0 Dog 5.0 2

1 Dog 3.0 8

2 Cat 1.0 7

3 Dog 4.0 3

4 cow NaN 2

编程小号
上一篇 2025-03-23 20:06
下一篇 2025-03-21 17:01

相关推荐

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。
如需转载请保留出处:https://bianchenghao.cn/hz/134779.html