决策数(Decision Tree)在机器学习中也是比较常见的一种算法,属于监督学习中的一种。看字面意思应该也比较容易理解,相比其他算法比如支持向量机(SVM)或神经网络,似乎决策树感觉“亲切”许多。

优点:计算复杂度不高,输出结果易于理解,对中间值的缺失值不敏感,可以处理不相关特征数据。

缺点:可能会产生过度匹配的问题。

使用数据类型:数值型和标称型。
简单介绍完毕,让我们来通过一个例子让决策树“原形毕露”。
一天,老师问了个问题,只根据头发和声音怎么判断一位同学的性别。
为了解决这个问题,同学们马上简单的统计了7位同学的相关特征,数据如下:
| 头发 | 声音 | 性别 |
| 长 | 粗 | 男 |
| 短 | 粗 | 男 |
| 短 | 粗 | 男 |
| 长 | 细 | 女 |
| 短 | 细 | 女 |
| 短 | 粗 | 女 |
| 长 | 粗 | 女 |
| 长 | 粗 | 女 |
机智的同学A想了想,先根据头发判断,若判断不出,再根据声音判断,于是画了一幅图,如下:
于是,一个简单、直观的决策树就这么出来了。头发长、声音粗就是男生;头发长、声音细就是女生;头发短、声音粗是男生;头发短、声音细是女生。
原来机器学习中决策树就这玩意,这也太简单了吧。。。
这时又蹦出个同学B,想先根据声音判断,然后再根据头发来判断,如是大手一挥也画了个决策树:
同学B的决策树:首先判断声音,声音细,就是女生;声音粗、头发长是男生;声音粗、头发长是女生。
那么问题来了:同学A和同学B谁的决策树好些?计算机做决策树的时候,面对多个特征,该如何选哪个特征为最佳的划分特征?
划分数据集的大原则是:将无序的数据变得更加有序。
我们可以使用多种方法划分数据集,但是每种方法都有各自的优缺点。于是我们这么想,如果我们能测量数据的复杂度,对比按不同特征分类后的数据复杂度,若按某一特征分类后复杂度减少的更多,那么这个特征即为最佳分类特征。
Claude Shannon 定义了熵(entropy)和信息增益(information gain)。
用熵来表示信息的复杂度,熵越大,则信息越复杂。公式如下:
信息增益(information gain),表示两个信息熵的差值。
首先计算未分类前的熵,总共有8位同学,男生3位,女生5位。
熵(总)=-3/8log2(3/8)-5/8log2(5/8)=0.9544
接着分别计算同学A和同学B分类后信息熵。
同学A首先按头发分类,分类后的结果为:长头发中有1男3女。短头发中有2男2女。
熵(同学A长发)=-1/4log2(1/4)-3/4log2(3/4)=0.8113
熵(同学A短发)=-2/4log2(2/4)-2/4log2(2/4)=1
熵(同学A)=4/80.8113+4/81=0.9057
信息增益(同学A)=熵(总)-熵(同学A)=0.9544-0.9057=0.0487
同理,按同学B的方法,首先按声音特征来分,分类后的结果为:声音粗中有3男3女。声音细中有0男2女。
熵(同学B声音粗)=-3/6log2(3/6)-3/6log2(3/6)=1
熵(同学B声音粗)=-2/2log2(2/2)=0
熵(同学B)=6/81+2/8*0=0.75
信息增益(同学B)=熵(总)-熵(同学B)=0.9544-0.75=0.2087
按同学B的方法,先按声音特征分类,信息增益更大,区分样本的能力更强,更具有代表性。
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。
如需转载请保留出处:https://bianchenghao.cn/hz/137118.html