MapReduce编程初级实践_mapreduce的执行流程

MapReduce编程初级实践_mapreduce的执行流程编程实现文件合并和去重操作 对于两个输入文件 即文件 A 和文件 B 请编写 MapReduce 程序 对两个文件进行合并 并剔除其中重复的内容 得到一个新的输出文件 C 下面是输入文件和输出文件的一个样例供参考 输入文件 A 的样例如下 x y x y z x Jetbrains 全家桶 1 年 46

编程实现文件合并和去重操作
对于两个输入文件,即文件A和文件B,请编写MapReduce程序,对两个文件进行合并,并剔除其中重复的内容,得到一个新的输出文件C。下面是输入文件和输出文件的一个样例供参考。
输入文件A的样例如下:

	20150101     x
20150102 y
20150103 x
20150104 y
20150105 z
20150106 x

Jetbrains全家桶1年46,售后保障稳定

输入文件B的样例如下:

	20150101      y
20150102 y
20150103 x
20150104 z
20150105 y

根据输入文件A和B合并得到的输出文件C的样例如下:

	20150101      x
20150101 y
20150102 y
20150103 x
20150104 y
20150104 z
20150105 y
20150105 z
20150106 x


【注释】数据去重的最终目标是让原始数据中出现次数超过一次的数据在输出文件中只出现一次。由于shuffle过程会有合并相同key值记录的过程,会想到将不同文件中相同内容数据的Key设置成一样的,即是Map处理后是一样的,然后把交给Reduce,无论这个数据的value-list是怎么样,只要在最终结果输出它的key就行了。

代码如下:

package com.Merge;

import java.io.IOException;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.*;
import org.apache.hadoop.mapreduce.lib.output.*;
//import org.apache.hadoop.mapred.FileOutputFormat;


//import org.apache.hadoop.mapreduce.Mapper.Context;

public class Merge {
public static class Map extends Mapper{
private static Text text=new Text();

public void map(Object key,Text value,Context context) throws IOException, InterruptedException{

text=value;
context.write(text,new Text(""));

}

}
public static class Reduce extends Reducer{
public void reduce(Text key,Iterable values,Context context) throws IOException, InterruptedException{
context.write(key, new Text(""));
}
}
public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException{
Configuration conf=new Configuration();
conf.set("fs.defaultFS","hdfs://localhost:9000");
String[] otherArgs=new String[]{"input","output"};
if(otherArgs.length!=2){
System.err.println("Usage:Merge and duplicate removal");
System.exit(2);
}
Job job=Job.getInstance(conf,"Merge and duplicate removal");
job.setJarByClass(Merge.class);
job.setMapperClass(Map.class);
job.setReducerClass(Reduce.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(Text.class);
FileInputFormat.addInputPath(job,new Path(otherArgs[0]));
FileOutputFormat.setOutputPath(job,new Path(otherArgs[1]));
System.exit(job.waitForCompletion(true)?0:1);
}



}

输出结果:

合并与去重成功!

2.编写程序实现对输入文件的排序
现在有多个输入文件,每个文件中的每行内容均为一个整数。要求读取所有文件中的整数,进行升序排序后,输出到一个新的文件中,输出的数据格式为每行两个整数,第一个数字为第二个整数的排序位次,第二个整数为原待排列的整数。下面是输入文件和输出文件的一个样例供参考。
输入文件1的样例如下:

33
37
12
40

输入文件2的样例如下:

4
16
39
5

输入文件3的样例如下:

1
45
25

根据输入文件1、2和3得到的输出文件如下:

1 1
2 4
3 5
4 12
5 16
6 25
7 33
8 37
9 39
10 40
11 45


【注释】MapRedcue有默认排序规则:按照key值进行排序的,如果key为封装int的IntWritable类型,那么MapReduce按照数字大小对key排序。所以在Map中将读入的数据转化成IntWritable型,然后作为key值输出(value任意)。reduce拿到之后,将输入的key作为value输出,并根据value-list中元素的个数决定输出的次数。

代码如下:

package com.MergeSort;
import java.io.IOException;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.util.GenericOptionsParser;
public class MergeSort {

public static class Map extends Mapper{

private static IntWritable data=new IntWritable();
public void map(Object key,Text value,Context context) throws IOException, InterruptedException{

String line=value.toString();
data.set(Integer.parseInt(line));
context.write(data, new IntWritable(1));
}
}
public static class Reduce extends Reducer{

private static IntWritable linenum=new IntWritable(1);
public void reduce(IntWritable key,Iterable values,Context context) throws IOException, InterruptedException{

for(IntWritable num:values){

context.write(linenum, key);
linenum=new IntWritable(linenum.get()+1);
}
}
}
/** * @param args * @throws IOException * @throws InterruptedException * @throws ClassNotFoundException */
public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException{

Configuration conf=new Configuration();
conf.set("fs.defaultFS","hdfs://localhost:9000");
String[] str=new String[]{
"input","output"};
String[] otherArgs=new GenericOptionsParser(conf,str).getRemainingArgs();
if(otherArgs.length!=2){

System.err.println("Usage:mergesort");
System.exit(2);
}
Job job=Job.getInstance(conf,"mergesort");
job.setJarByClass(MergeSort.class);
job.setMapperClass(Map.class);
job.setReducerClass(Reduce.class);
job.setOutputKeyClass(IntWritable.class);
job.setOutputValueClass(IntWritable.class);
FileInputFormat.addInputPath(job,new Path(otherArgs[0]));
FileOutputFormat.setOutputPath(job,new Path(otherArgs[1]));
System.exit(job.waitForCompletion(true)?0:1);
}
}

输出结果:


合并及排序成功!

3.对给定的表格进行信息挖掘
下面给出一个child-parent的表格,要求挖掘其中的父子辈关系,给出祖孙辈关系的表格。
输入文件内容如下:

Steven        Lucy
Steven Jack
Jone Lucy
Jone Jack
Lucy Mary
Lucy Frank
Jack Alice
Jack Jesse
David Alice
David Jesse
Philip David
Philip Alma
Mark David
Mark Alma

输出文件内容如下:

	grandchild       grandparent
Steven Alice
Steven Jesse
Jone Alice
Jone Jesse
Steven Mary
Steven Frank
Jone Mary
Jone Frank
Philip Alice
Philip Jesse
Mark Alice
Mark Jesse


【注释】分析题意可知这是要进行单表连接。考虑到MapReduce的Shuffle过程会将相同的Key值放在一起,所以可以将Map结果的Key值设置成待连接的列,然后列中相同的值就自然会连接在一起了。具体而言,就是是左表的parent列和右表的child列设置成Key,则左表中child(即为结果中的grandchild)和右表中的parent(即为结果中的grandparent)。为了区分输出中的左、右表,需要在输出的value-list中再加入左、右表的信息,比如,在value的String最开始处加上字符1表示左表,加上字符2表示右表。这样设计后,Reduce接收的中每个key的value-list包含了grandchild和grandparent关系。取出每个Key的value-list进行解析,将右表中的child放入一个数组,左表中的parent放入另一个数组,然后对两个数组求笛卡尔积就是最后的结果。

代码如下:

package com.join;
import java.io.IOException;
import java.util.*;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
public class STjoin {

public static int time = 0;
public static class Map extends Mapper {

public void map(Object key, Text value, Context context)
throws IOException, InterruptedException {

String child_name = new String();
String parent_name = new String();
String relation_type = new String();
String line = value.toString();
int i = 0;
while (line.charAt(i) != ' ') {

i++;
}
String[] values = {
line.substring(0, i), line.substring(i + 1) };
if (values[0].compareTo("child") != 0) {

child_name = values[0];
parent_name = values[1];
relation_type = "1";
context.write(new Text(values[1]), new Text(relation_type + "+" + child_name + "+" + parent_name));
relation_type = "2";
context.write(new Text(values[0]), new Text(relation_type + "+"
+ child_name + "+" + parent_name));
}
}
}
public static class Reduce extends Reducer {

public void reduce(Text key, Iterable values, Context context)
throws IOException, InterruptedException {

if (time == 0) {

context.write(new Text("grand_child"), new Text("grand_parent"));
time++;
}
int grand_child_num = 0;
String grand_child[] = new String[10];
int grand_parent_num = 0;
String grand_parent[] = new String[10];
Iterator ite = values.iterator();
while (ite.hasNext()) {

String record = ite.next().toString();
int len = record.length();
int i = 2;
if (len == 0)
continue;
char relation_type = record.charAt(0);
String child_name = new String();
String parent_name = new String();
while (record.charAt(i) != '+') {

child_name = child_name + record.charAt(i);
i++;
}
i = i + 1;
while (i < len) {

parent_name = parent_name + record.charAt(i);
i++;
}
if (relation_type == '1') {

grand_child[grand_child_num] = child_name;
grand_child_num++;
} else {

grand_parent[grand_parent_num] = parent_name;
grand_parent_num++;
}
}
if (grand_parent_num != 0 && grand_child_num != 0) {

for (int m = 0; m < grand_child_num; m++) {

for (int n = 0; n < grand_parent_num; n++) {

context.write(new Text(grand_child[m]), new Text(grand_parent[n]));
}
}
}
}
}
public static void main(String[] args) throws Exception {

Configuration conf = new Configuration();
conf.set("fs.defaultFS", "hdfs://localhost:9000");
String[] otherArgs = new String[] {
"input", "output" };
if (otherArgs.length != 2) {

System.err.println("Usage: Single Table Join ");
System.exit(2);
}
Job job = Job.getInstance(conf, "Single table join ");
job.setJarByClass(STjoin.class);
job.setMapperClass(Map.class);
job.setReducerClass(Reduce.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(Text.class);
FileInputFormat.addInputPath(job, new Path(otherArgs[0]));
FileOutputFormat.setOutputPath(job, new Path(otherArgs[1]));
System.exit(job.waitForCompletion(true) ? 0 : 1);
}
}

输出结果:

挖掘亲属关系成功!

编程小号
上一篇 2025-01-17 09:17
下一篇 2025-01-17 09:06

相关推荐

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。
如需转载请保留出处:https://bianchenghao.cn/hz/148776.html