不定积分基本公式与推导

不定积分基本公式与推导1 $ \int\ a^x,dx=\dfrac{a^x}{lna} + C,\quad ({a^x})’ = a^x lna $ 2 $ \int\tan x,dx=\int\dfrac{sinx}{

1


  a x d x = a x l n a + C , ( a x ) = a x l n a \int\ a^x\,dx=\dfrac{a^x}{lna} + C,\quad ({a^x})’ = a^x lna

2


tan x d x = s i n x c o s x d x = 1 c o s x d ( c o s x ) = ln cos x + C \int\tan x\,dx=\int\dfrac{sinx}{cosx}\,dx=-\int\dfrac{1}{cosx}\,d(cosx)=-\ln{|\cos{x}|} + C


cot x d x = c o s x s i n x d x = 1 s i n x d ( s i n x ) = ln sin x + C \int\cot x\,dx=\int\dfrac{cosx}{sinx}\,dx=-\int\dfrac{1}{sinx}\,d(sinx)=\ln{|\sin{x}|} + C

3


1 c o s x d x = sec x d x = c o s x ( c o s x ) 2 d x = c o s x 1 ( s i n x ) 2 d x = 1 1 ( s i n x ) 2 d ( s i n x ) = 1 ( 1 + s i n x ) ( 1 s i n x ) d ( s i n x ) = 1 2 [ 1 1 + s i n x d ( s i n x ) 1 1 s i n x d ( s i n x ) ] = 1 2 l n 1 + s i n x 1 s i n x + C = 1 2 l n ( 1 + s i n x ) 2 ( c o s x ) 2 = l n 1 + s i n x c o s x = l n s e c x + t a n x + C \int\dfrac{1}{cosx}\,dx =\int\sec{x}\,dx\\ =\int\dfrac{cosx}{(cosx)^2}\,dx =\int\dfrac{cosx}{1-(sinx)^2}\,dx \\ =\int\dfrac{1}{1-(sinx)^2}\,d(sinx)=\int\dfrac{1}{(1+sinx)(1-sinx)}\,d(sinx) \\ =\dfrac{1}{2}[\int\dfrac{1}{1+sinx}\,d(sinx) – \int\dfrac{1}{1-sinx}\,d(sinx)] \\ =\dfrac{1}{2}ln|\dfrac{1+sinx}{1-sinx}| + C \\ =\dfrac{1}{2}ln|\dfrac{(1+sinx)^2}{(cosx)^2}|=ln|\dfrac{1+sinx}{cosx}| \\ =ln|secx + tanx| + C


1 s i n x d x = csc x d x = s i n x ( s i n x ) 2 d x = s i n x 1 ( c o s x ) 2 d x = 1 1 ( c o s x ) 2 d ( c o s x ) = 1 ( 1 + c o s x ) ( 1 c o s x ) d ( c o s x ) = 1 2 [ 1 1 + c o s x d ( c o s x + 1 ) 1 1 c o s x d ( 1 c o s x ) ] = 1 2 l n 1 + c o s x 1 c o s x = 1 2 l n ( s i n x ) 2 ( 1 c o s x ) 2 = l n 1 c o s x s i n x = l n c s c x + c o t x + C \int\dfrac{1}{sinx}\,dx =\int\csc{x}\,dx \\ =\int\dfrac{sinx}{(sinx)^2}\,dx =\int\dfrac{sinx}{1-(cosx)^2}\,dx \\ =-\int\dfrac{1}{1-(cosx)^2}\,d(cosx)=-\int\dfrac{1}{(1+cosx)(1-cosx)}\,d(cosx) \\ =-\dfrac{1}{2}[\int\dfrac{1}{1+cosx}\,d(cosx+1) – \int\dfrac{1}{1-cosx}\,d(1-cosx)] \\ =-\dfrac{1}{2}ln|\dfrac{1+cosx}{1-cosx}| \\ =-\dfrac{1}{2}ln\dfrac{(sinx)^2}{(1-cosx)^2} \\ =ln|\dfrac{1-cosx}{sinx}| \\ =ln|cscx + cotx| + C

4


( s e c x ) 2 d x = t a n x + C , t a n x = ( s e c x ) 2 \int (secx)^2\,dx=tanx + C,\quad tanx’=(secx)^2

( c s c x ) 2 d x = c o t x + C , c o t x = ( c s c x ) 2 \int (cscx)^2\,dx=-cotx +C,\quad cotx’=-(cscx)^2

5


s e c x    t a n x d x = s i n x ( c o s x ) 2 d x = 1 ( c o s x ) 2 d ( c o s x ) = s e c x + C , ( s e c x ) = s e c x    t a n x \int secx \; tanx\, dx= \int \dfrac{sinx}{(cosx)^2}\,dx=\int-\dfrac{1}{(cosx)^2}\,d(cosx)=secx+C, \quad (secx)’=secx\;tanx

c s c x    c o t x d x = c o s x ( s i n x ) 2 d x = 1 ( s i n x ) 2 d ( s i n x ) = c s c x + C , ( c s c x ) = c s c x c o t x \int cscx \; cotx \,dx = \int\dfrac{cosx}{(sinx)^2}\,dx=\int\dfrac{1}{(sinx)^2}\,d(sinx)=-cscx + C, \quad (cscx)’ = cscx – cotx

6


1 a 2 + x 2 d x = 1 a a r c t a n x a + C \int\dfrac{1}{a^2 + x^2}\,dx=\dfrac{1}{a}arctan\dfrac{x}{a} + C

1 a 2 x 2 d x = a r c s i n x a + C \int\dfrac{1}{\sqrt{a^2 – x^2}}\,dx=arcsin\dfrac{x}{a} + C

7

三角函数换元


1 x 2 a 2 d x    x = a s e c t , d x = a    s e c t    t a n t    d t = 1 a t a n t    a s e c t    t a n t d t = s e c t d t = l n s e c t + t a n t + C 回代    x s e c t = x a , t a n t = x 2 a 2 a = l n x + x 2 a 2 l n a + C 1 = l n x + x 2 a 2 + C \int\dfrac{1}{\sqrt{x^2 – a^2}}\,dx \\ 令\; x=asect, \quad dx=a\;sect \; tant \; dt \\ =\int \dfrac{1}{atant} \; asect \; tant\, dt \\ =\int sect\, dt \\ =ln|sect + tant| + C \\ 回代 \; x sect=\dfrac{x}{a} ,\quad tant=\dfrac{\sqrt{x^2 – a^2}}{a} \\ =ln | x + \sqrt{x^2 – a^2}| – lna + C_1 \\ =ln | x + \sqrt{x^2 – a^2}| + C


1 x 2 + a 2 d x    x = a t a n t , d x = a    ( s e c t ) 2    d t = 1 a s e c t    a ( s e c t ) 2 , d t = s e c t d t = l n s e c t + t a n t + C 回代    s e c t = x 2 + a 2 a    t a n t = x a = l n x + x 2 + a 2 + C \int\dfrac{1}{\sqrt{x^2 + a^2}}\,dx \\ 令\; x=atant, \quad dx=a\;(sect)^2 \; dt \\ =\int \dfrac{1}{asect} \; a(sect)^2, dt \\ =\int sect\, dt \\ =ln|sect + tant| + C \\ 回代 \; sect = \dfrac{\sqrt{x^2 + a^2}}{a} \; tant=\dfrac{x}{a} \\ =ln|x + \sqrt{x^2 + a^2}| + C


a 2 x 2 d x    x = a s i n t d x = a c o s t d t = a 2 ( c o s t ) 2 d t = a 2 c o s 2 t + 1 2 d t = a 2 ( s i n 2 t 4 + t 2 ) + C 回代    s i n 2 t = 2 s i n t c o s t = 2 x a 2 x 2 a 2 t = a r c s i n x a = a 2 2 a r c s i n x a + x 2 a 2 x 2 + C \int\sqrt{a^2 – x^2}\, dx \\ 令\; x=asint \quad dx=acostdt \\ =\int a^2 (cost)^2\, dt \\ =a^2 \int \dfrac{cos2t+1}{2}\, dt \\ =a^2(\dfrac{sin2t}{4}+\dfrac{t}{2})+ C \\ 回代 \; sin2t=2sintcost=\dfrac{2x\sqrt{a^2-x^2}}{a^2} \quad t=arcsin\dfrac{x}{a} \\ =\dfrac{a^2}{2}arcsin\dfrac{x}{a} + \dfrac{x}{2}\sqrt{a^2 – x^2} + C

8

平方差


1 x 2 a 2 d x = 1 ( x + a ) ( x a ) d x = 1 2 a [ 1 x + a d x 1 x a d x ] = 1 2 a l n x + a x a + C \int \dfrac{1}{x^2-a^2}\, dx \\ =\int \dfrac{1}{(x+a)(x-a)}\, dx \\ =\dfrac{1}{2a}[\int \dfrac{1}{x+a}\,dx – \int \dfrac{1}{x-a}\, dx]\\ =\dfrac{1}{2a}ln\dfrac{x+a}{x-a} + C

9

三角函数变换


( c o s x ) 2 d x = c o s 2 x + 1 2 d x = s i n 2 x 4 + x 2 + C \int (cosx)^2\, dx=\int \dfrac{cos2x+1}{2}\,dx=\dfrac{sin2x}{4}+\dfrac{x}{2}+ C

( s i n x ) 2 d x = 1 c o s 2 x 2 d x = x 2 s i n 2 x 4 + C \int (sinx)^2\, dx=\int \dfrac{1-cos2x}{2}\, dx=\dfrac{x}{2} – \dfrac{sin2x}{4} + C

( t a n x ) 2 d x = ( s e c x ) 2 1 d x = t a n x x + C \int (tanx)^2\, dx=\int (secx)^2 – 1\, dx=tanx – x + C

( c o t x ) 2 d x = ( c s c x ) 2 1 d x = c o t x x + C \int (cotx)^2\, dx=\int (cscx)^2 – 1\, dx=-cotx – x + C

今天的文章不定积分基本公式与推导分享到此就结束了,感谢您的阅读。

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。
如需转载请保留出处:https://bianchenghao.cn/14382.html

(0)
编程小号编程小号

相关推荐

发表回复

您的电子邮箱地址不会被公开。 必填项已用*标注