学任何一门技术,都应该带着目标去学习,目标就像一座灯塔,指引你前进,很多人学着学着就学放弃了,很大部分原因是没有明确目标,所以,在你准备学爬虫前,先问问自己为什么要学习爬虫。有些人是为了一份工作,有些人是为了好玩,也有些人是为了实现某个黑科技功能。不过 肯定的是,学会了爬虫,能给你的工作提供很多便利。
作为零基础小白,大体上可分为三个阶段去实现,第一阶段是入门,掌握必备基础知识,比如Python基础、网络请求的基本原理等,第二阶段是模仿,跟着别人的爬虫代码学,弄懂每一行代码,熟悉主流的爬虫工具,第三阶段是自己动手,到了这个阶段你开始有自己的解题思路了,可以独立设计爬虫系统。
爬虫涉及的技术包括但不限于熟练一门编程语言(这里以 Python 为例) HTML 知识、HTTP 协议的基本知识、正则表达式、数据库知识,常用抓包工具的使用、爬虫框架的使用、涉及到大规模爬虫,还需要了解分布式的概念、消息队列、常用的数据结构和算法、缓存,甚至还包括机器学习的应用,大规模的系统背后都是靠很多技术来支撑的。数据分析、挖掘、甚至是机器学习都离不开数据,而数据很多时候需要通过爬虫来获取,因此,作为一门专业爬虫工程师都是有很大的前途的。
那么是不是一定要把上面的知识全学完了才可以开始写爬虫吗?当然不是,学习是一辈子的事,只要你会写 Python 代码了,就直接上手爬虫,好比学车,只要能开动了就上路吧,写代码可比开车安全多了。
用 Python 写爬虫,首先需要会 Python,把基础语法搞懂,知道怎么使用函数、类、list、dict 中的常用方法就算基本入门。接着你需要了解 HTML,HTML 就是一个文档树结构,网上有个 HTML 30分钟入门教程 deerchao.net/tutorials/h… 够用了。然后是关于 HTTP 的知识,爬虫基本原理就是通过网络请求从远程服务器下载数据的过程,而这个网络请求背后的技术就是基于 HTTP 协议。作为入门爬虫来说,你需要了解 HTTP协议的基本原理,虽然 HTTP 规范用一本书都写不完,但深入的内容可以放以后慢慢去看,理论与实践相结合。
网络请求框架都是对 HTTP 协议的实现,比如著名的网络请求库 Requests 就是一个模拟浏览器发送 HTTP 请求的网络库。了解 HTTP 协议之后,你就可以专门有针对性的学习和网络相关的模块了,比如 Python 自带有 urllib、urllib2(Python3中的urllib),httplib,Cookie等内容,当然你可以直接跳过这些,直接学习 Requests 怎么用,前提是你熟悉了 HTTP协议的基本内容,数据爬下来,大部分情况是 HTML 文本,也有少数是基于 XML 格式或者 Json 格式的数据,要想正确处理这些数据,你要熟悉每种数据类型的解决方案,比如 JSON 数据可以直接使用 Python自带的模块 json,对于 HTML 数据,可以使用 BeautifulSoup、lxml 等库去处理,对于 xml 数据,除了可以使用 untangle、xmltodict 等第三方库。
爬虫工具里面,学会使用 Chrome 或者 FireFox 浏览器去审查元素,跟踪请求信息等等,现在大部分网站有配有APP和手机浏览器访问的地址,优先使用这些接口,相对更容易。还有 Fiddler 等代理工具的使用。
入门爬虫,学习正则表达式并不是必须的,你可以在你真正需要的时候再去学,比如你把数据爬取回来后,需要对数据进行清洗,当你发现使用常规的字符串操作方法根本没法处理时,这时你可以尝试了解一下正则表达式,往往它能起到事半功倍的效果。Python 的 re 模块可用来处理正则表达式。这里也推荐一个教程:Python正则表达式指南 www.cnblogs.com/huxi/archiv…
数据清洗完最终要进行持久化存储,你可以用文件存储,比如CSV文件,也可以用数据库存储,简单的用 sqlite,专业点用 MySQL,或者是分布式的文档数据库 MongoDB,这些数据库对Python都非常友好,有现成的库支持,你要做的就是熟悉这些 API 怎么使用。
从数据的抓取到清洗再到存储的基本流程都走完了,也算是基本入门了,接下来就是考验内功的时候了,很多网站都设有反爬虫策略,他们想方设法阻止你用非正常手段获取数据,比如会有各种奇奇怪怪的验证码限制你的请求操作、对请求速度做限制,对IP做限制、甚至对数据进行加密操作,总之,就是为了提高获取数据的成本。这时你需要掌握的知识就要更多了,你需要深入理解 HTTP 协议,你需要理解常见的加解密算法,你要理解 HTTP 中的 cookie,HTTP 代理,HTTP中的各种HEADER。爬虫与反爬虫就是相爱相杀的一对,道高一次魔高一丈。如何应对反爬虫没有既定的统一的解决方案,靠的是你的经验以及你所掌握的知识体系。这不是仅凭21天入门教程就能达到的高度。
进行大规模爬虫,通常都是从一个URL开始爬,然后把页面中解析的URL链接加入待爬的URL集合中,我们需要用到队列或者优先队列来区别对待有些网站优先爬,有些网站后面爬。每爬去一个页面,是使用深度优先还是广度优先算法爬取下一个链接。每次发起网络请求的时候,会涉及到一个DNS的解析过程(将网址转换成IP)为了避免重复地 DNS 解析,我们需要把解析好的 IP 缓存下来。URL那么多,如何判断哪些网址已经爬过,哪些没有爬过,简单点就是是使用字典结构来存储已经爬过的的URL,但是如果碰过海量的URL时,字典占用的内存空间非常大,此时你需要考虑使用 Bloom Filter(布隆过滤器),用一个线程逐个地爬取数据,效率低得可怜,如果提高爬虫效率,是使用多线程,多进程还是协程,还是分布式操作。
博客:foofish.net
公众号:Python之禅
今天的文章Python爬虫知识梳理分享到此就结束了,感谢您的阅读。
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。
如需转载请保留出处:https://bianchenghao.cn/15659.html