应用进程的虚拟机实例是何时创建的?进程的Binder线程池又是何时启动?为什么所有的应用进程都是由Zygote进程创建?其实这些问题的答案都藏在Android系统的启动流程中。这部分作为整个系统的开端,里面有很多知识点是我们广大Android开发者进阶所必须要了解的。本文将基于Android 11的代码简单的梳理一下这部分流程。
1. init进程启动
Android系统是基于Linux kernel内核的。当用户长按电源键后,会引导芯片加载BootLoader到内存中,并开始拉起Linux kernel内核。待Linux kernel启动完成后便会启动第一个用户空间的进程——init进程。启动init进程时,会进入system/core/init/main.cpp文件执行main方法,主要分两个阶段初始化完成启动过程,代码如下:
/*system/core/init/main.cpp*/
int main(int argc, char** argv) {
#if __has_feature(address_sanitizer)
__asan_set_error_report_callback(AsanReportCallback);
#endif
// Boost prio which will be restored later
setpriority(PRIO_PROCESS, 0, -20);
if (!strcmp(basename(argv[0]), "ueventd")) {
// init进程创建子进程ueventd,负责设备节点的创建、权限设定等一些列工作
return ueventd_main(argc, argv);
}
if (argc > 1) {
if (!strcmp(argv[1], "subcontext")) {
android::base::InitLogging(argv, &android::base::KernelLogger);
const BuiltinFunctionMap& function_map = GetBuiltinFunctionMap();
// 初始化日志系统
return SubcontextMain(argc, argv, &function_map);
}
if (!strcmp(argv[1], "selinux_setup")) {
// 启动Selinux安全策略
return SetupSelinux(argv);
}
if (!strcmp(argv[1], "second_stage")) {
// 执行第二阶段启动
return SecondStageMain(argc, argv);
}
}
// 执行第一阶段启动
return FirstStageMain(argc, argv);
}
- 先执行FirstStageMain(argc, argv);FirstStageMain()中主要做了一些目录创建、设备节点创建和设备挂载的动作。简化代码如下:
int FirstStageMain(int argc, char** argv) {
...
CHECKCALL(clearenv());
CHECKCALL(setenv("PATH", _PATH_DEFPATH, 1));
// Get the basic filesystem setup we need put together in the initramdisk
// on / and then we'll let the rc file figure out the rest.
CHECKCALL(mount("tmpfs", "/dev", "tmpfs", MS_NOSUID, "mode=0755")); // 挂载tmpfs文件系统
CHECKCALL(mkdir("/dev/pts", 0755));
CHECKCALL(mkdir("/dev/socket", 0755));// 创建dev/socket设备节点
CHECKCALL(mkdir("/dev/dm-user", 0755));
CHECKCALL(mount("devpts", "/dev/pts", "devpts", 0, NULL));// 挂载devpts文件系统
...
CHECKCALL(mount("sysfs", "/sys", "sysfs", 0, NULL));// 挂载sysfs文件系统
CHECKCALL(mount("selinuxfs", "/sys/fs/selinux", "selinuxfs", 0, NULL));
CHECKCALL(mknod("/dev/kmsg", S_IFCHR | 0600, makedev(1, 11)));// 提前创建了kmsg设备节点文件,用于输出log信息
...
#undef CHECKCALL
...
return 1;
}
- 再执行SecondStageMain(argc, argv):主要逻辑是启动属性服务、解析init.rc文件并启动相关进程,简化代码如下:
/*system/core/init/init.cpp*/
int SecondStageMain(int argc, char** argv) {
...
PropertyInit(); // 1.初始化属性系统,并从指定文件读取属性
...
StartPropertyService(&property_fd);// 2.设置其他系统属性并开启系统属性服务
...
ActionManager& am = ActionManager::GetInstance();
ServiceList& sm = ServiceList::GetInstance();
LoadBootScripts(am, sm);// 3.解析init.rc等文件,建立rc文件的action 、service,启动其他进程
...
return 0;
}
static void LoadBootScripts(ActionManager& action_manager, ServiceList& service_list) {
Parser parser = CreateParser(action_manager, service_list);// 构建解析器
std::string bootscript = GetProperty("ro.boot.init_rc", "");
if (bootscript.empty()) {
/* 依次解析不同路径下谷歌system、soc厂商vendor、odm厂商的init.rc文件并启动相关进程 */
parser.ParseConfig("/system/etc/init/hw/init.rc");
if (!parser.ParseConfig("/system/etc/init")) {
late_import_paths.emplace_back("/system/etc/init");
}
parser.ParseConfig("/system_ext/etc/init");
if (!parser.ParseConfig("/vendor/etc/init")) {
late_import_paths.emplace_back("/vendor/etc/init");
}
if (!parser.ParseConfig("/odm/etc/init")) {
late_import_paths.emplace_back("/odm/etc/init");
}
if (!parser.ParseConfig("/product/etc/init")) {
late_import_paths.emplace_back("/product/etc/init");
}
} else {
parser.ParseConfig(bootscript);
}
}
加载解析rc文件并启动服务。init.rc是一个配置文件,内部由Android初始化语言编写(Android Init Language),编写的脚本 init.rc文件是在init进程启动后执行的启动脚本,文件中记录着init进程需执行的操作。init.rc主要包含五种类型语句:
- Action
- Command
- Service
- Option
- Import
下面我们继续看看init.rc中是如何定义启动zygote进程的?
2. Zygote进程启动
首先在init.rc里改成了通过${ro.zygote}
属性的值来决定引入Zygote相关的配置,如下所示:
/*system/core/rootdir/init.rc*/
import /system/etc/init/hw/init.${ro.zygote}.rc
...
on late-init
# Now we can start zygote for devices with file based encryption
trigger zygote-start // 1. 触发启动zygote
...
on zygote-start && property:ro.crypto.state=encrypted && property:ro.crypto.type=file
wait_for_prop odsign.verification.done 1
# A/B update verifier that marks a successful boot.
exec_start update_verifier_nonencrypted
start statsd
start netd
start zygote // 2.启动zygote服务
start zygote_secondary
...
${ro.zygote}
的取值有4种,在init.rc的同级目录system/core/rootdir/下,可以看到4个Zygote相关的配置文件,表示系统所支持程序的bit位数:
- init.zygote32.rc,Zygote进程的执行程序路径为/system/bin/app_process
- init.zygote64.rc,Zygote进程的执行程序路径为/system/bin/app_process64
- init.zygote32_64.rc,会启动两个Zygote进程,有两个执行程序,32为主模式
- init.zygote64_32.rc,会启动两个Zygote进程,有两个执行程序,64为主模式(系统兼容运行64位和32位的应用)
我们看看目前最新项目设备中普遍使用的init.zygote64_32.rc文件写法:
/*system/core/rootdir/init.zygote64_32.rc*/
service zygote /system/bin/app_process64 -Xzygote /system/bin --zygote --start-system-server --socket-name=zygote //启动64位的zygote
class main
priority -20
user root
group root readproc reserved_disk
socket zygote stream 660 root system //创建一个名为zygote的socket
socket usap_pool_primary stream 660 root system
onrestart exec_background - system system -- /system/bin/vdc volume abort_fuse
onrestart write /sys/power/state on
onrestart restart audioserver
onrestart restart cameraserver
onrestart restart media
onrestart restart netd
onrestart restart wificond
task_profiles ProcessCapacityHigh MaxPerformance
critical window=${zygote.critical_window.minute:-off} target=zygote-fatal
service zygote_secondary /system/bin/app_process32 -Xzygote /system/bin --zygote --socket-name=zygote_secondary --enable-lazy-preload //启动32位的zygote
class main
priority -20
user root
group root readproc reserved_disk
socket zygote_secondary stream 660 root system
socket usap_pool_secondary stream 660 root system
onrestart restart zygote
task_profiles ProcessCapacityHigh MaxPerformance
第一行中,service
表示Zygote进程以服务的形式来启动,zygote
则是进程的名字,/system/bin/app_process64
是执行程序的路径,后面几项则是传给执行程序的参数,其中--start-system-server
表示在Zygote进程启动后需要启动system_server进程。然后是Zygote进程是使用socket来进行跨进程通信的,所以会创建一个名为zygote的socket,660表示访问权限rw-rw----
,表示文件拥有者和同一群组用户具有读写权限。
init进程启动后,通过fork和execv来启动Zygote进程,如下简化代码所示:
/*system/core/init/service.cpp*/
Result<void> Service::Start() {
...
pid_t pid = -1;
if (namespaces_.flags) {
pid = clone(nullptr, nullptr, namespaces_.flags | SIGCHLD, nullptr);
} else {
pid = fork();// 1.fork创建service进程(也就是zygote进程)
}
if (pid == 0) {
...
if (!ExpandArgsAndExecv(args_, sigstop_)) {
PLOG(ERROR) << "cannot execv('" << args_[0]
<< "'). See the 'Debugging init' section of init's README.md for tips";
}
...
}
}
static bool ExpandArgsAndExecv(const std::vector<std::string>& args, bool sigstop) {
std::vector<std::string> expanded_args;
std::vector<char*> c_strings;
expanded_args.resize(args.size());
c_strings.push_back(const_cast<char*>(args[0].data()));
for (std::size_t i = 1; i < args.size(); ++i) {
auto expanded_arg = ExpandProps(args[i]);
if (!expanded_arg.ok()) {
LOG(FATAL) << args[0] << ": cannot expand arguments': " << expanded_arg.error();
}
expanded_args[i] = *expanded_arg;
c_strings.push_back(expanded_args[i].data()); // 封装参数
}
c_strings.push_back(nullptr);
if (sigstop) {
kill(getpid(), SIGSTOP);
}
// 2. c_strings[0]是执行程序路径,即如果启动的是zygote服务时,execve会运行/system/bin/app_process64
return execv(c_strings[0], c_strings.data()) == 0;
}
2.1 native层app_process
首先运行可执行程序app_process的入口main函数:
/*frameworks/base/cmds/app_process/app_main.cpp*/
int main(int argc, char* const argv[])
{
...
// Parse runtime arguments. Stop at first unrecognized option.
bool zygote = false;
...
while (i < argc) {
const char* arg = argv[i++];
if (strcmp(arg, "--zygote") == 0) {
zygote = true; // 参数标识启动zygote进程
niceName = ZYGOTE_NICE_NAME;
} else if (strcmp(arg, "--start-system-server") == 0) {
startSystemServer = true; //参数标识启动system_server进程
}
...
}
...
if (!niceName.isEmpty()) {
runtime.setArgv0(niceName.string(), true /* setProcName */); // 进程名app_process修改为zygote
}
if (zygote) {
// 启动Zygote,执行AndroidRuntime.start函数
runtime.start("com.android.internal.os.ZygoteInit", args, zygote);
} else if (className) {
runtime.start("com.android.internal.os.RuntimeInit", args, zygote);
} else {
...
}
}
我们进一步来看AndroidRuntime的start流程代码:
/*frameworks/base/core/jni/AndroidRuntime.cpp*/
void AndroidRuntime::start(const char* className, const Vector<String8>& options, bool zygote)
{
ALOGD(">>>>>> START %s uid %d <<<<<<\n",
className != NULL ? className : "(unknown)", getuid());
...
/* start the virtual machine */
JniInvocation jni_invocation;
jni_invocation.Init(NULL);
JNIEnv* env;
if (startVm(&mJavaVM, &env, zygote, primary_zygote) != 0) {// 1.启动VM虚拟机
return;
}
onVmCreated(env);
/* * Register android functions. */
if (startReg(env) < 0) { // 2.注册框架JNI调用到虚拟机中
ALOGE("Unable to register all android natives\n");
return;
}
...
char* slashClassName = toSlashClassName(className != NULL ? className : "");
jclass startClass = env->FindClass(slashClassName);
if (startClass == NULL) {
ALOGE("JavaVM unable to locate class '%s'\n", slashClassName);
} else {
// 3.JNI调用进入java层执行ZygoteInit的main函数
jmethodID startMeth = env->GetStaticMethodID(startClass, "main",
"([Ljava/lang/String;)V");
if (startMeth == NULL) {
ALOGE("JavaVM unable to find main() in '%s'\n", className);
/* keep going */
} else {
env->CallStaticVoidMethod(startClass, startMeth, strArray);
...
}
...
}
从代码中可以看到AndroidRuntime#start方法中主要完成三件事情:
-
启动进程的VM虚拟机;
-
注册Android系统框架JNI调用到虚拟机中;
-
通过JNI调用进入java层执行ZygoteInit的main函数;
2.2 java层ZyogeInit
我们继续往下看简化的代码流程:
/*frameworks/base/core/java/com/android/internal/os/ZygoteInit.java*/
public static void main(String[] argv) {
ZygoteServer zygoteServer = null;
...
try {
...
for (int i = 1; i < argv.length; i++) {
if ("start-system-server".equals(argv[i])) {
// 在init.rc文件中,有--start-system-server参数,表示要创建SystemServer
startSystemServer = true;
} else if ("--enable-lazy-preload".equals(argv[i])) {
enableLazyPreload = true;
}
...
}
...
// In some configurations, we avoid preloading resources and classes eagerly.
// In such cases, we will preload things prior to our first fork.
if (!enableLazyPreload) {
...
preload(bootTimingsTraceLog);// 1.预加载资源
...
}
...
zygoteServer = new ZygoteServer(isPrimaryZygote); // 2.创建Socket服务端
if (startSystemServer) {
// 3.fork启动system_server进程
Runnable r = forkSystemServer(abiList, zygoteSocketName, zygoteServer);
...
}
//4. sokcet服务端等待AMS请求(AMS会通过socket请求Zygote来创建应用程序进程)
caller = zygoteServer.runSelectLoop(abiList);
} catch (Throwable ex) {
Log.e(TAG, "System zygote died with exception", ex);
throw ex;
}
...
}
static void preload(TimingsTraceLog bootTimingsTraceLog) {
...
preloadClasses();// 1.加载system/etc/preloaded-classes文件中定义的各个系统类
...
preloadResources(); // 2.加载系统中定义的各个drawables、color资源
...
}
从代码中可以看到ZygoteInit#main方法中主要fork启动system_server进程:
-
zygote进程中预加载类、主题资源、字体资源等,基于linux的copy-on-write机制,从而加速后续zygote fork创建出的应用进程的启动速度;
-
创建socket服务端,用于跨进程通信;
-
fork创建启动系统system_server进程;
-
Sokcet服务端进入循环监听等待,等待后续AMS请求(AMS会通过socket请求Zygote来创建应用程序进程)。
3. system_server进程的启动
我们接着ZygoteInit#forkSystemServer往下看:
/*frameworks/base/core/java/com/android/internal/os/ZygoteInit.java*/
private static Runnable forkSystemServer(String abiList, String socketName, ZygoteServer zygoteServer) {
...
/* Hardcoded command line to start the system server */
// 1.构建启动system_server进程的相关设置参数
String[] args = {
"--setuid=1000",
"--setgid=1000",
"--setgroups=1001,1002,1003,1004,1005,1006,1007,1008,1009,1010,1018,1021,1023,"
+ "1024,1032,1065,3001,3002,3003,3006,3007,3009,3010,3011",
"--capabilities=" + capabilities + "," + capabilities,
"--nice-name=system_server",
"--runtime-args",
"--target-sdk-version=" + VMRuntime.SDK_VERSION_CUR_DEVELOPMENT,
// system_server启动的类名
"com.android.server.SystemServer",
};
...
try {
...
/* Request to fork the system server process */
// 2.fork创建system_server进程,具体实现在native层
pid = Zygote.forkSystemServer(
parsedArgs.mUid, parsedArgs.mGid,
parsedArgs.mGids,
parsedArgs.mRuntimeFlags,
null,
parsedArgs.mPermittedCapabilities,
parsedArgs.mEffectiveCapabilities);
} catch (IllegalArgumentException ex) {
throw new RuntimeException(ex);
}
/* For child process */
if (pid == 0) {
if (hasSecondZygote(abiList)) {
waitForSecondaryZygote(socketName);
}
zygoteServer.closeServerSocket();
// 3.pid为0代表在新创建的system_server进程中,继续通过handleSystemServerProcess进一步处理
return handleSystemServerProcess(parsedArgs);
}
return null;
}
/** * Finish remaining work for the newly forked system server process. */
private static Runnable handleSystemServerProcess(ZygoteArguments parsedArgs) {
...
if (parsedArgs.mInvokeWith != null) {
...
} else {
...
/* * Pass the remaining arguments to SystemServer. */
// 调用ZygoteInit#zygoteInit函数具体处理
return ZygoteInit.zygoteInit(parsedArgs.mTargetSdkVersion,
parsedArgs.mDisabledCompatChanges,
parsedArgs.mRemainingArgs, cl);
}
}
public static Runnable zygoteInit(int targetSdkVersion, long[] disabledCompatChanges, String[] argv, ClassLoader classLoader) {
...
// 1.RuntimeInit初始化,通过setDefaultUncaughtExceptionHandler设置默认的异常处理机制
RuntimeInit.commonInit();
// 2.触发启动进程的Binder线程池
ZygoteInit.nativeZygoteInit();
// 3.内部经过层层调用,最终通过反射创建"com.android.server.SystemServer"类对象并执行其main函数
return RuntimeInit.applicationInit(targetSdkVersion, disabledCompatChanges, argv,
classLoader);
}
继续结合代码看看RuntimeInit#applicationInit是如何实现反射创建”com.android.server.SystemServer”类对象并执行其main函数的:
/*frameworks/base/core/java/com/android/internal/os/RuntimeInit.java*/
protected static Runnable applicationInit(int targetSdkVersion, long[] disabledCompatChanges, String[] argv, ClassLoader classLoader) {
...
return findStaticMain(args.startClass, args.startArgs, classLoader);
}
protected static Runnable findStaticMain(String className, String[] argv, ClassLoader classLoader) {
Class<?> cl;
try {
// 1.通过反射加载构建"com.android.server.SystemServer"类对象
cl = Class.forName(className, true, classLoader);
} catch (ClassNotFoundException ex) {
throw new RuntimeException(
"Missing class when invoking static main " + className,
ex);
}
Method m;
try {
//2.访问获取"com.android.server.SystemServer"的main方法
m = cl.getMethod("main", new Class[] { String[].class });
} catch (NoSuchMethodException ex) {
throw new RuntimeException(
"Missing static main on " + className, ex);
} catch (SecurityException ex) {
throw new RuntimeException(
"Problem getting static main on " + className, ex);
}
...
/* * This throw gets caught in ZygoteInit.main(), which responds * by invoking the exception's run() method. This arrangement * clears up all the stack frames that were required in setting * up the process. */
// 3.通过抛异常触发执行main函数并清除调用栈
return new MethodAndArgsCaller(m, argv);
}
static class MethodAndArgsCaller implements Runnable {
/** method to call */
private final Method mMethod;
/** argument array */
private final String[] mArgs;
public MethodAndArgsCaller(Method method, String[] args) {
mMethod = method;
mArgs = args;
}
public void run() {
try {
// 通过反射调用main函数
mMethod.invoke(null, new Object[] { mArgs });
} catch (IllegalAccessException ex) {
throw new RuntimeException(ex);
} catch (InvocationTargetException ex) {
Throwable cause = ex.getCause();
if (cause instanceof RuntimeException) {
throw (RuntimeException) cause;
} else if (cause instanceof Error) {
throw (Error) cause;
}
throw new RuntimeException(ex);
}
}
}
从上面的分析中可以看到,system_server进程创建后,会通过反射创建”com.android.server.SystemServer”入口类对象并执行其main方法,我们继续往下看代码简化流程:
/*frameworks/base/services/java/com/android/server/SystemServer.java*/
public static void main(String[] args) {
new SystemServer().run();
}
private void run() {
...
// 1.创建主线程Looper
Looper.prepareMainLooper();
// 2.创建系统Context上下文
createSystemContext();
// 3.创建SystemServiceManager,用于后续系统服务(AMS、WMS等)的创建、启动和生命周期管理
mSystemServiceManager = new SystemServiceManager(mSystemContext);
mSystemServiceManager.setStartInfo(mRuntimeRestart, mRuntimeStartElapsedTime, mRuntimeStartUptime);
LocalServices.addService(SystemServiceManager.class, mSystemServiceManager);
// 4.服务根据优先级被分成3批来启动:
try {
t.traceBegin("StartServices");
//启动引导服务,如AMS、PMS等
startBootstrapServices(t);
//启动核心服务
startCoreServices(t);
//启动其他服务
startOtherServices(t);
} catch (Throwable ex) {
Slog.e("System", "******************************************");
Slog.e("System", "************ Failure starting system services", ex);
throw ex;
} finally {
t.traceEnd(); // StartServices
}
// 5.开启looper循环
Looper.loop();
}
总结一下上述流程,system_server进程创建之后,主要做了如下几件事情:
-
启动进程的Binder线程池;
-
创建SystemServiceManager大管家,用于后续系统服务(AMS、WMS等)的创建、启动和生命周期管理;
-
用SystemServiceManager按照优先级启动系统各个服务;
-
创建并启动进程的主线程的loop循环;
4. Launcher应用的启动
我们接上一节system_server进程创建之后启动系统服务的流程往下看,以AMS服务的启动为例,相关简化代码流程如下:
/*frameworks/base/services/java/com/android/server/SystemServer.java*/
private void startBootstrapServices(@NonNull TimingsTraceAndSlog t) {
...
t.traceBegin("StartActivityManager");
// 1.SystemServiceManager启动AMS服务
ActivityTaskManagerService atm = mSystemServiceManager.startService(
ActivityTaskManagerService.Lifecycle.class).getService();
mActivityManagerService = ActivityManagerService.Lifecycle.startService(
mSystemServiceManager, atm);
mActivityManagerService.setSystemServiceManager(mSystemServiceManager);
mActivityManagerService.setInstaller(installer);
mWindowManagerGlobalLock = atm.getGlobalLock();
t.traceEnd();
...
}
private void startOtherServices(@NonNull TimingsTraceAndSlog t) {
...
// We now tell the activity manager it is okay to run third party
// code. It will call back into us once it has gotten to the state
// where third party code can really run (but before it has actually
// started launching the initial applications), for us to complete our
// initialization.
// 2.从这里开始便可以开始启动三方APP应用(如Launcher)
mActivityManagerService.systemReady(() -> {
...
}, t);
}
从上面的代码流程中可以看到system_server进程创建之后,启动系统各核心服务的最后会调用到mActivityManagerService#systemReady便可正式开始启动三方APP应用(如Launcher),我们继续往下看:
/*frameworks/base/services/java/com/android/server/am/ActivitymanagerService.java*/
public void systemReady(final Runnable goingCallback, TimingsTraceAndSlog t){
...
if (bootingSystemUser) {
t.traceBegin("startHomeOnAllDisplays");
// 由于Android系统支持多用户和多显示,调用startHomeOnAllDisplays启动每个display上的Home Activity
mAtmInternal.startHomeOnAllDisplays(currentUserId,"systemReady");
t.traceEnd();
}
}
startHomeOnAllDisplays中经过层层调用最终会调用到startHomeActivity启动Category类型为CATEGORY_HOME类型的应用,也就是Launcher桌面,相关代码简化流程如下:
/*frameworks/base/services/java/com/android/server/wm/RootWindowContainer.java*/
boolean startHomeOnTaskDisplayArea(int userId, String reason, TaskDisplayArea taskDisplayArea, boolean allowinstrumenting, boolean fromHomeKey){
...
// 最终调用startHomeActivity启动Category类型为CATEGORY_HOME类型的应用,也就是Launcher桌面
mService.startActivityStartController().startHomeActivity(homeIntent, aInfo, myReason, taskDisplayArea);
return true;
}
5.调试建议
假如你的手机遇到开机比较慢的问题,我们该如何去定位问题的原因出在哪儿呢?这里提供几点调试建议:
5.1 基于系统log定位问题
重启手机,在开机时使用如下adb命令抓取相关日志:
adb shell “logcat -b events |grep “boot_p””
06-03 09:43:19.554 730 730 I boot_progress_start: 4274 //标志着系统kernel启动完成,第一个用户空间进程init进程启动,耗时4274ms
06-03 09:43:19.768 730 730 I boot_progress_preload_start: 4487 //标志着zygote进程开始preload预加载资源
06-03 09:43:20.669 730 730 I boot_progress_preload_end: 5389 //标志着zygote进程preload预加载资源完成
06-03 09:43:21.082 1196 1196 I boot_progress_system_run: 5802 // 标志着system_server进程启动
06-03 09:43:22.186 1196 1196 I boot_progress_pms_start: 6905 // 标志着系统pkms服务启动并开始扫描已安装应用的动作
06-03 09:43:22.430 1196 1196 I boot_progress_pms_system_scan_start: 7150
06-03 09:43:22.757 1196 1196 I boot_progress_pms_data_scan_start: 7477
06-03 09:43:23.033 1196 1196 I boot_progress_pms_scan_end: 7753
06-03 09:43:23.185 1196 1196 I boot_progress_pms_ready: 7905// // 标志着系统pkms服务扫描完成
06-03 09:43:24.133 1196 1196 I boot_progress_ams_ready: 8853 // 标志着AMS已经进入systemReady状态可以启动Home Activity
06-03 09:43:25.468 1196 1523 I boot_progress_enable_screen: 10187 // 标志着锁频界面已经点亮显示,整个开机完成,耗时10187ms
5.2 使用bootchart性能分析工具定位问题
bootchart是一个用于linux启动过程性能分析的开源工具软件,在系统启动过程中自动收集CPU占用率、磁盘吞吐率、进程等信息,并以图形方式显示分析结果,可用作指导优化系统启动过程。Android 系统源码中有bootchart的实现,路径在system/core/init/bootchart.cpp。具体使用方法可以参考下文进行操作: blog.csdn.net/qq_19923217…
6. 总结
最后还是用一张图总结Android系统的启动核心流程:
7. 参考文章
图解 | Android系统的启动 juejin.cn/post/688478…
今天的文章Android系统启动流程(基于Android 11)分享到此就结束了,感谢您的阅读。
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。
如需转载请保留出处:https://bianchenghao.cn/17011.html