序
本文主要研究一下flink的JDBCOutputFormat
JDBCOutputFormat
flink-jdbc_2.11-1.7.0-sources.jar!/org/apache/flink/api/java/io/jdbc/JDBCOutputFormat.java
/** * OutputFormat to write Rows into a JDBC database. * The OutputFormat has to be configured using the supplied OutputFormatBuilder. * * @see Row * @see DriverManager */
public class JDBCOutputFormat extends RichOutputFormat<Row> {
private static final long serialVersionUID = 1L;
static final int DEFAULT_BATCH_INTERVAL = 5000;
private static final Logger LOG = LoggerFactory.getLogger(JDBCOutputFormat.class);
private String username;
private String password;
private String drivername;
private String dbURL;
private String query;
private int batchInterval = DEFAULT_BATCH_INTERVAL;
private Connection dbConn;
private PreparedStatement upload;
private int batchCount = 0;
private int[] typesArray;
public JDBCOutputFormat() {
}
@Override
public void configure(Configuration parameters) {
}
/** * Connects to the target database and initializes the prepared statement. * * @param taskNumber The number of the parallel instance. * @throws IOException Thrown, if the output could not be opened due to an * I/O problem. */
@Override
public void open(int taskNumber, int numTasks) throws IOException {
try {
establishConnection();
upload = dbConn.prepareStatement(query);
} catch (SQLException sqe) {
throw new IllegalArgumentException("open() failed.", sqe);
} catch (ClassNotFoundException cnfe) {
throw new IllegalArgumentException("JDBC driver class not found.", cnfe);
}
}
private void establishConnection() throws SQLException, ClassNotFoundException {
Class.forName(drivername);
if (username == null) {
dbConn = DriverManager.getConnection(dbURL);
} else {
dbConn = DriverManager.getConnection(dbURL, username, password);
}
}
/** * Adds a record to the prepared statement. * * <p>When this method is called, the output format is guaranteed to be opened. * * <p>WARNING: this may fail when no column types specified (because a best effort approach is attempted in order to * insert a null value but it's not guaranteed that the JDBC driver handles PreparedStatement.setObject(pos, null)) * * @param row The records to add to the output. * @see PreparedStatement * @throws IOException Thrown, if the records could not be added due to an I/O problem. */
@Override
public void writeRecord(Row row) throws IOException {
if (typesArray != null && typesArray.length > 0 && typesArray.length != row.getArity()) {
LOG.warn("Column SQL types array doesn't match arity of passed Row! Check the passed array...");
}
try {
if (typesArray == null) {
// no types provided
for (int index = 0; index < row.getArity(); index++) {
LOG.warn("Unknown column type for column {}. Best effort approach to set its value: {}.", index + 1, row.getField(index));
upload.setObject(index + 1, row.getField(index));
}
} else {
// types provided
for (int index = 0; index < row.getArity(); index++) {
if (row.getField(index) == null) {
upload.setNull(index + 1, typesArray[index]);
} else {
// casting values as suggested by http://docs.oracle.com/javase/1.5.0/docs/guide/jdbc/getstart/mapping.html
switch (typesArray[index]) {
case java.sql.Types.NULL:
upload.setNull(index + 1, typesArray[index]);
break;
case java.sql.Types.BOOLEAN:
case java.sql.Types.BIT:
upload.setBoolean(index + 1, (boolean) row.getField(index));
break;
case java.sql.Types.CHAR:
case java.sql.Types.NCHAR:
case java.sql.Types.VARCHAR:
case java.sql.Types.LONGVARCHAR:
case java.sql.Types.LONGNVARCHAR:
upload.setString(index + 1, (String) row.getField(index));
break;
case java.sql.Types.TINYINT:
upload.setByte(index + 1, (byte) row.getField(index));
break;
case java.sql.Types.SMALLINT:
upload.setShort(index + 1, (short) row.getField(index));
break;
case java.sql.Types.INTEGER:
upload.setInt(index + 1, (int) row.getField(index));
break;
case java.sql.Types.BIGINT:
upload.setLong(index + 1, (long) row.getField(index));
break;
case java.sql.Types.REAL:
upload.setFloat(index + 1, (float) row.getField(index));
break;
case java.sql.Types.FLOAT:
case java.sql.Types.DOUBLE:
upload.setDouble(index + 1, (double) row.getField(index));
break;
case java.sql.Types.DECIMAL:
case java.sql.Types.NUMERIC:
upload.setBigDecimal(index + 1, (java.math.BigDecimal) row.getField(index));
break;
case java.sql.Types.DATE:
upload.setDate(index + 1, (java.sql.Date) row.getField(index));
break;
case java.sql.Types.TIME:
upload.setTime(index + 1, (java.sql.Time) row.getField(index));
break;
case java.sql.Types.TIMESTAMP:
upload.setTimestamp(index + 1, (java.sql.Timestamp) row.getField(index));
break;
case java.sql.Types.BINARY:
case java.sql.Types.VARBINARY:
case java.sql.Types.LONGVARBINARY:
upload.setBytes(index + 1, (byte[]) row.getField(index));
break;
default:
upload.setObject(index + 1, row.getField(index));
LOG.warn("Unmanaged sql type ({}) for column {}. Best effort approach to set its value: {}.",
typesArray[index], index + 1, row.getField(index));
// case java.sql.Types.SQLXML
// case java.sql.Types.ARRAY:
// case java.sql.Types.JAVA_OBJECT:
// case java.sql.Types.BLOB:
// case java.sql.Types.CLOB:
// case java.sql.Types.NCLOB:
// case java.sql.Types.DATALINK:
// case java.sql.Types.DISTINCT:
// case java.sql.Types.OTHER:
// case java.sql.Types.REF:
// case java.sql.Types.ROWID:
// case java.sql.Types.STRUC
}
}
}
}
upload.addBatch();
batchCount++;
} catch (SQLException e) {
throw new RuntimeException("Preparation of JDBC statement failed.", e);
}
if (batchCount >= batchInterval) {
// execute batch
flush();
}
}
void flush() {
try {
upload.executeBatch();
batchCount = 0;
} catch (SQLException e) {
throw new RuntimeException("Execution of JDBC statement failed.", e);
}
}
int[] getTypesArray() {
return typesArray;
}
/** * Executes prepared statement and closes all resources of this instance. * * @throws IOException Thrown, if the input could not be closed properly. */
@Override
public void close() throws IOException {
if (upload != null) {
flush();
// close the connection
try {
upload.close();
} catch (SQLException e) {
LOG.info("JDBC statement could not be closed: " + e.getMessage());
} finally {
upload = null;
}
}
if (dbConn != null) {
try {
dbConn.close();
} catch (SQLException se) {
LOG.info("JDBC connection could not be closed: " + se.getMessage());
} finally {
dbConn = null;
}
}
}
public static JDBCOutputFormatBuilder buildJDBCOutputFormat() {
return new JDBCOutputFormatBuilder();
}
//......
}
- JDBCOutputFormat继承了RichOutputFormat,这里的泛型为org.apache.flink.types.Row
- open的时候调用了establishConnection来加载驱动,初始化dbConn,然后调用dbConn.prepareStatement(query)来获取upload(
PreparedStatement
) - writeRecord方法先判断是否有提供typesArray,没有的话则使用setObject来设置值,有点话则根据对应的类型进行转换,这里支持了多种java.sql.Types里头的类型
- writeRecord采取的是PreparedStatement.addBatch操作,当batchCount大于等于batchInterval(
默认5000
),会执行flush操作,也就是调用PreparedStatement.executeBatch方法,然后重置batchCount;为了以防数据没达到batchInterval而未能提交,在close的时候会再次执行flush操作,然后才关闭PreparedStatement、Connection - JDBCOutputFormat提供了一个JDBCOutputFormatBuilder,可以用来方便构建JDBCOutputFormat
Row
flink-core-1.7.0-sources.jar!/org/apache/flink/types/Row.java
/** * A Row can have arbitrary number of fields and contain a set of fields, which may all be * different types. The fields in Row can be null. Due to Row is not strongly typed, Flink's * type extraction mechanism can't extract correct field types. So that users should manually * tell Flink the type information via creating a {@link RowTypeInfo}. * * <p> * The fields in the Row can be accessed by position (zero-based) {@link #getField(int)}. And can * set fields by {@link #setField(int, Object)}. * <p> * Row is in principle serializable. However, it may contain non-serializable fields, * in which case serialization will fail. * */
@PublicEvolving
public class Row implements Serializable{
private static final long serialVersionUID = 1L;
/** The array to store actual values. */
private final Object[] fields;
/** * Create a new Row instance. * @param arity The number of fields in the Row */
public Row(int arity) {
this.fields = new Object[arity];
}
/** * Get the number of fields in the Row. * @return The number of fields in the Row. */
public int getArity() {
return fields.length;
}
/** * Gets the field at the specified position. * @param pos The position of the field, 0-based. * @return The field at the specified position. * @throws IndexOutOfBoundsException Thrown, if the position is negative, or equal to, or larger than the number of fields. */
public Object getField(int pos) {
return fields[pos];
}
/** * Sets the field at the specified position. * * @param pos The position of the field, 0-based. * @param value The value to be assigned to the field at the specified position. * @throws IndexOutOfBoundsException Thrown, if the position is negative, or equal to, or larger than the number of fields. */
public void setField(int pos, Object value) {
fields[pos] = value;
}
@Override
public String toString() {
StringBuilder sb = new StringBuilder();
for (int i = 0; i < fields.length; i++) {
if (i > 0) {
sb.append(",");
}
sb.append(StringUtils.arrayAwareToString(fields[i]));
}
return sb.toString();
}
@Override
public boolean equals(Object o) {
if (this == o) {
return true;
}
if (o == null || getClass() != o.getClass()) {
return false;
}
Row row = (Row) o;
return Arrays.deepEquals(fields, row.fields);
}
@Override
public int hashCode() {
return Arrays.deepHashCode(fields);
}
/** * Creates a new Row and assigns the given values to the Row's fields. * This is more convenient than using the constructor. * * <p>For example: * * <pre> * Row.of("hello", true, 1L);} * </pre> * instead of * <pre> * Row row = new Row(3); * row.setField(0, "hello"); * row.setField(1, true); * row.setField(2, 1L); * </pre> * */
public static Row of(Object... values) {
Row row = new Row(values.length);
for (int i = 0; i < values.length; i++) {
row.setField(i, values[i]);
}
return row;
}
/** * Creates a new Row which copied from another row. * This method does not perform a deep copy. * * @param row The row being copied. * @return The cloned new Row */
public static Row copy(Row row) {
final Row newRow = new Row(row.fields.length);
System.arraycopy(row.fields, 0, newRow.fields, 0, row.fields.length);
return newRow;
}
/** * Creates a new Row with projected fields from another row. * This method does not perform a deep copy. * * @param fields fields to be projected * @return the new projected Row */
public static Row project(Row row, int[] fields) {
final Row newRow = new Row(fields.length);
for (int i = 0; i < fields.length; i++) {
newRow.fields[i] = row.fields[fields[i]];
}
return newRow;
}
}
- Row是JDBCOutputFormat的writeRecord的类型,它里头使用Object数据来存取字段值,同时也提供了诸如of、copy、project等静态方法
JDBCOutputFormatBuilder
flink-jdbc_2.11-1.7.0-sources.jar!/org/apache/flink/api/java/io/jdbc/JDBCOutputFormat.java
/** * Builder for a {@link JDBCOutputFormat}. */
public static class JDBCOutputFormatBuilder {
private final JDBCOutputFormat format;
protected JDBCOutputFormatBuilder() {
this.format = new JDBCOutputFormat();
}
public JDBCOutputFormatBuilder setUsername(String username) {
format.username = username;
return this;
}
public JDBCOutputFormatBuilder setPassword(String password) {
format.password = password;
return this;
}
public JDBCOutputFormatBuilder setDrivername(String drivername) {
format.drivername = drivername;
return this;
}
public JDBCOutputFormatBuilder setDBUrl(String dbURL) {
format.dbURL = dbURL;
return this;
}
public JDBCOutputFormatBuilder setQuery(String query) {
format.query = query;
return this;
}
public JDBCOutputFormatBuilder setBatchInterval(int batchInterval) {
format.batchInterval = batchInterval;
return this;
}
public JDBCOutputFormatBuilder setSqlTypes(int[] typesArray) {
format.typesArray = typesArray;
return this;
}
/** * Finalizes the configuration and checks validity. * * @return Configured JDBCOutputFormat */
public JDBCOutputFormat finish() {
if (format.username == null) {
LOG.info("Username was not supplied.");
}
if (format.password == null) {
LOG.info("Password was not supplied.");
}
if (format.dbURL == null) {
throw new IllegalArgumentException("No database URL supplied.");
}
if (format.query == null) {
throw new IllegalArgumentException("No query supplied.");
}
if (format.drivername == null) {
throw new IllegalArgumentException("No driver supplied.");
}
return format;
}
}
- JDBCOutputFormatBuilder提供了对username、password、dbURL、query、drivername、batchInterval、typesArray这几个属性的builder方法
JDBCAppendTableSink
flink-jdbc_2.11-1.7.0-sources.jar!/org/apache/flink/api/java/io/jdbc/JDBCAppendTableSink.java
/** * An at-least-once Table sink for JDBC. * * <p>The mechanisms of Flink guarantees delivering messages at-least-once to this sink (if * checkpointing is enabled). However, one common use case is to run idempotent queries * (e.g., <code>REPLACE</code> or <code>INSERT OVERWRITE</code>) to upsert into the database and * achieve exactly-once semantic.</p> */
public class JDBCAppendTableSink implements AppendStreamTableSink<Row>, BatchTableSink<Row> {
private final JDBCOutputFormat outputFormat;
private String[] fieldNames;
private TypeInformation[] fieldTypes;
JDBCAppendTableSink(JDBCOutputFormat outputFormat) {
this.outputFormat = outputFormat;
}
public static JDBCAppendTableSinkBuilder builder() {
return new JDBCAppendTableSinkBuilder();
}
@Override
public void emitDataStream(DataStream<Row> dataStream) {
dataStream
.addSink(new JDBCSinkFunction(outputFormat))
.name(TableConnectorUtil.generateRuntimeName(this.getClass(), fieldNames));
}
@Override
public void emitDataSet(DataSet<Row> dataSet) {
dataSet.output(outputFormat);
}
@Override
public TypeInformation<Row> getOutputType() {
return new RowTypeInfo(fieldTypes, fieldNames);
}
@Override
public String[] getFieldNames() {
return fieldNames;
}
@Override
public TypeInformation<?>[] getFieldTypes() {
return fieldTypes;
}
@Override
public TableSink<Row> configure(String[] fieldNames, TypeInformation<?>[] fieldTypes) {
int[] types = outputFormat.getTypesArray();
String sinkSchema =
String.join(", ", IntStream.of(types).mapToObj(JDBCTypeUtil::getTypeName).collect(Collectors.toList()));
String tableSchema =
String.join(", ", Stream.of(fieldTypes).map(JDBCTypeUtil::getTypeName).collect(Collectors.toList()));
String msg = String.format("Schema of output table is incompatible with JDBCAppendTableSink schema. " +
"Table schema: [%s], sink schema: [%s]", tableSchema, sinkSchema);
Preconditions.checkArgument(fieldTypes.length == types.length, msg);
for (int i = 0; i < types.length; ++i) {
Preconditions.checkArgument(
JDBCTypeUtil.typeInformationToSqlType(fieldTypes[i]) == types[i],
msg);
}
JDBCAppendTableSink copy;
try {
copy = new JDBCAppendTableSink(InstantiationUtil.clone(outputFormat));
} catch (IOException | ClassNotFoundException e) {
throw new RuntimeException(e);
}
copy.fieldNames = fieldNames;
copy.fieldTypes = fieldTypes;
return copy;
}
@VisibleForTesting
JDBCOutputFormat getOutputFormat() {
return outputFormat;
}
}
- JDBCAppendTableSink里头用到了JDBCOutputFormat,它实现了AppendStreamTableSink以及BatchTableSink接口
- 它的emitDataStream方法会给传入的dataStream设置JDBCSinkFunction的sink(
JDBCSinkFunction
);而emitDataSet方法则对dataSet设置output - 这里实现了TableSink(
BatchTableSink声明实现TableSink
)的getOutputType、getFieldNames、getFieldTypes、configure方法;configure方法这里主要是根据JDBCOutputFormat创建了JDBCAppendTableSink
JDBCSinkFunction
flink-jdbc_2.11-1.7.0-sources.jar!/org/apache/flink/api/java/io/jdbc/JDBCSinkFunction.java
class JDBCSinkFunction extends RichSinkFunction<Row> implements CheckpointedFunction {
final JDBCOutputFormat outputFormat;
JDBCSinkFunction(JDBCOutputFormat outputFormat) {
this.outputFormat = outputFormat;
}
@Override
public void invoke(Row value) throws Exception {
outputFormat.writeRecord(value);
}
@Override
public void snapshotState(FunctionSnapshotContext context) throws Exception {
outputFormat.flush();
}
@Override
public void initializeState(FunctionInitializationContext context) throws Exception {
}
@Override
public void open(Configuration parameters) throws Exception {
super.open(parameters);
RuntimeContext ctx = getRuntimeContext();
outputFormat.setRuntimeContext(ctx);
outputFormat.open(ctx.getIndexOfThisSubtask(), ctx.getNumberOfParallelSubtasks());
}
@Override
public void close() throws Exception {
outputFormat.close();
super.close();
}
}
- JDBCSinkFunction继承了RichSinkFunction,同时也实现了CheckpointedFunction接口;invoke方法使用的是JDBCOutputFormat.writeRecord方法,而snapshotState则是调用了JDBCOutputFormat.flush来及时提交记录
小结
- JDBCOutputFormat继承了RichOutputFormat,open的时候调用了establishConnection来加载驱动,初始化dbConn,然后调用dbConn.prepareStatement(query)来获取upload(
PreparedStatement
);writeRecord采取的是PreparedStatement.addBatch操作,当batchCount大于等于batchInterval(默认5000
),会执行flush操作,也就是调用PreparedStatement.executeBatch方法,然后重置batchCount;为了以防数据没达到batchInterval而未能提交,在close的时候会再次执行flush操作,然后才关闭PreparedStatement、Connection - Row是JDBCOutputFormat的writeRecord的类型,它里头使用Object数据来存取字段值
- JDBCOutputFormatBuilder提供了对username、password、dbURL、query、drivername、batchInterval、typesArray这几个属性的builder方法
- JDBCAppendTableSink里头用到了JDBCOutputFormat,它的emitDataStream方法会给传入的dataStream设置JDBCSinkFunction的sink(
JDBCSinkFunction
);而emitDataSet方法则对dataSet设置output - JDBCSinkFunction继承了RichSinkFunction,同时也实现了CheckpointedFunction接口;invoke方法使用的是JDBCOutputFormat.writeRecord方法,而snapshotState则是调用了JDBCOutputFormat.flush来及时提交记录
doc
今天的文章聊聊flink的JDBCOutputFormat分享到此就结束了,感谢您的阅读。
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。
如需转载请保留出处:https://bianchenghao.cn/21287.html