【火炉炼AI】机器学习035-NLP词干提取
(本文所使用的Python库和版本号: Python 3.6, Numpy 1.14, scikit-learn 0.19, matplotlib 2.2, NLTK 3.3)
在英语中,经常会有很多单词的变形,记得以前英语老师讲课时,讲到动词的变形,有过去时,将来时,现在进行时等不同场合,动词需要变成相应的形态,而讲到名词时,又提到单数和复数的概念,可数名词要在单词末尾加s等。那么NLP如何处理这些变形之后的词了?有一种方法是提取这些词的词干,所谓万变不离其宗,我们只要抓住这个“宗”就可以应对其他了。
本文就是讲解如何用NLP提取单词的词干,抓住这些单词的“宗”。
1. NLP提取词干
词干提取的目标是将不同词形的单词都变成其原形,词干提取使用启发式处理的方法来截取单词的尾部,以提取单词的原形。
NLP主要有说那种词干提取方法:基于Porter的词干提取算法,基于Lancaster的词干提取算法,基于Snowball的词干提取算法。下面分别用这几种方法来提取不同单词的词干。
words = ['table', 'probably', 'wolves', 'playing', 'is',
'dog', 'the', 'beaches', 'grounded', 'dreamt', 'envision']
# 要提取的单词
# 三种不同的词干提取器
stemmers = ['PORTER', 'LANCASTER', 'SNOWBALL']
stemmer_porter = PorterStemmer()
stemmer_lancaster = LancasterStemmer()
stemmer_snowball = SnowballStemmer('english')
formatted_row = '{:>16}' * (len(stemmers) + 1)
print(formatted_row.format('WORD',*stemmers)) # 打印表头
for word in words: # 每个单词逐一提取
stem=[stemmer_porter.stem(word),
stemmer_lancaster.stem(word), stemmer_snowball.stem(word)]
print(formatted_row.format(word,*stem)) # 对提取后的stem进行拆包
————————–输———出——
WORD PORTER LANCASTER SNOWBALL
table tabl tabl tabl
probably probabl prob probabl
wolves wolv wolv wolv
playing play play play
is is is is
dog dog dog dog
the the the the
beaches beach beach beach
grounded ground ground ground
dreamt dreamt dreamt dreamt
envision envis envid envis
———————-完—————————-
########################小**********结###############################
可以看出说那种词干提取算法都能够提取词干,但是提取的结果却不一样,这主要是因为三种算法的提取严格程度不一样,简单的比较下,Lancaster提取最严格,而Porter最宽松。所以Lancaster得到的词干往往比较模糊,难以理解,但是它的提取速度很快。一般情况下,通常会选择Snowball词干提取器。
#################################################################
注:本部分代码已经全部上传到(我的github)上,欢迎下载。
参考资料:
1, Python机器学习经典实例,Prateek Joshi著,陶俊杰,陈小莉译
今天的文章【火炉炼AI】机器学习035-NLP词干提取分享到此就结束了,感谢您的阅读。
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。
如需转载请保留出处:https://bianchenghao.cn/21454.html