读前福利:几百本互联网技术书籍送给大家 keketec.club/posts/77172…
sklearn 中的 make_blobs()函数
make_blobs() 是 sklearn.datasets中的一个函数
主要是产生聚类数据集,需要熟悉每个参数,继而更好的利用
官方链接:scikit-learn.org/dev/modules…
函数的源码:
def make_blobs(n_samples=100, n_features=2, centers=3, cluster_std=1.0, center_box=(-10.0, 10.0), shuffle=True, random_state=None):
"""Generate isotropic Gaussian blobs for clustering. Read more in the :ref:`User Guide <sample_generators>`. Parameters ---------- n_samples : int, optional (default=100) The total number of points equally divided among clusters. n_features : int, optional (default=2) The number of features for each sample. centers : int or array of shape [n_centers, n_features], optional (default=3) The number of centers to generate, or the fixed center locations. cluster_std: float or sequence of floats, optional (default=1.0) The standard deviation of the clusters. center_box: pair of floats (min, max), optional (default=(-10.0, 10.0)) The bounding box for each cluster center when centers are generated at random. shuffle : boolean, optional (default=True) Shuffle the samples. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. Returns ------- X : array of shape [n_samples, n_features] The generated samples. y : array of shape [n_samples] The integer labels for cluster membership of each sample. Examples -------- >>> from sklearn.datasets.samples_generator import make_blobs >>> X, y = make_blobs(n_samples=10, centers=3, n_features=2, ... random_state=0) >>> print(X.shape) (10, 2) >>> y array([0, 0, 1, 0, 2, 2, 2, 1, 1, 0]) See also -------- make_classification: a more intricate variant """
generator = check_random_state(random_state)
if isinstance(centers, numbers.Integral):
centers = generator.uniform(center_box[0], center_box[1],
size=(centers, n_features))
else:
centers = check_array(centers)
n_features = centers.shape[1]
if isinstance(cluster_std, numbers.Real):
cluster_std = np.ones(len(centers)) * cluster_std
X = []
y = []
n_centers = centers.shape[0]
n_samples_per_center = [int(n_samples // n_centers)] * n_centers
for i in range(n_samples % n_centers):
n_samples_per_center[i] += 1
for i, (n, std) in enumerate(zip(n_samples_per_center, cluster_std)):
X.append(centers[i] + generator.normal(scale=std,
size=(n, n_features)))
y += [i] * n
X = np.concatenate(X)
y = np.array(y)
if shuffle:
indices = np.arange(n_samples)
generator.shuffle(indices)
X = X[indices]
y = y[indices]
return X, y
可以看到它有 7 个参数
-
n_samples : int, optional (default=100) The total number of points equally divided among clusters.
样本数据量,默认为 100
-
n_features : int, optional (default=2) The number of features for each sample.
样本维度,默认为 2 维数据,测试选取 2 维数据也方便进行可视化展示
-
centers : int or array of shape [n_centers, n_features], optional (default=3) The number of centers to generate, or the fixed center locations.
产生数据的中心端,默认为 3
-
cluster_std: float or sequence of floats, optional (default=1.0) The standard deviation of the clusters.
数据集的标准差,浮点数或者浮点数序列,默认为1.0
-
center_box: pair of floats (min, max), optional (default=(-10.0, 10.0)) The bounding box for each cluster center when centers are generated at random.
中心确定之后,需要设定的数据边界,默认为(-10.0, 10.0)
-
shuffle : boolean, optional (default=True) Shuffle the samples.
洗牌操作,默认是True
-
random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by
np.random
.随机数种子,不同的种子产出不同的样本集合
今天的文章sklearn 中的 make_blobs()函数详解分享到此就结束了,感谢您的阅读。
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。
如需转载请保留出处:https://bianchenghao.cn/22923.html