第一个例子:
> x <- c(2.5,0.5,2.2,1.9,3.1,2.3,2,1,1.5,1.1)
> y <- c(2.4,0.7,2.9,2.2,3.0,2.7,1.6,1.1,1.6,0.9)
> cov(x,y)
[1] 0.6154444
> var(x,y)
[1] 0.6154444
> Z <- cbind(x,y)
> Z
x y
[1,] 2.5 2.4
[2,] 0.5 0.7
[3,] 2.2 2.9
[4,] 1.9 2.2
[5,] 3.1 3.0
[6,] 2.3 2.7
[7,] 2.0 1.6
[8,] 1.0 1.1
[9,] 1.5 1.6
[10,] 1.1 0.9
> typeof(Z)
[1] “double”
> cov(Z)
x y
x 0.6165556 0.6154444
y 0.6154444 0.7165556
第二个例子:
> A <- c(12,23,34,44,59,70,98)
> B <- c(12,15,25,27,32,88,99)
> C <- c(15,35,78,82,90,95,97)
> Matix <- cbind(A,B,C)
> Matix
A B C
[1,] 12 12 15
[2,] 23 15 35
[3,] 34 25 78
[4,] 44 27 82
[5,] 59 32 90
[6,] 70 88 95
[7,] 98 99 97
> cov(Matix)
A B C
A 872.6190 967.1190 802.3095
B 967.1190 1267.6190 794.4762
C 802.3095 794.4762 1035.2381
> var(A) #计算方差Covariance | R Tutorial
[1] 872.619
> sd(A) #计算标准差Standard Deviation
[1] 29.54013
如果是合并到行,用rbind()函数
求平均值用mean()函数
关于主成份分析的原理:
http://www.cs.otago.ac.nz/cosc453/student_tutorials/principal_components.pdf
今天的文章使用R计算方差和标准差分享到此就结束了,感谢您的阅读,如果确实帮到您,您可以动动手指转发给其他人。
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。
如需转载请保留出处:https://bianchenghao.cn/25390.html