数仓建模—数据模型

数仓建模—数据模型数据模型是抽象描述现实世界的**一种工具和方法**,是通过抽象的实体及真实的实体之间**联系的形式**,来表示现实世界中事务的相互关系的一种映射(也就是说模型对应着显示世界的一组关系或者一个事物)在这里,数据模型表现的抽象的是实体和实体之间的关系,**通过对实体和实体之间关系的定义和描述,来表达实际的业务中具体的业务关系**。所以总结下来,数据模型是用来描述数据、组织数据和对数据进行操作,是对现实世界数据特征的描述。其实就像是函数一样,例如给你一批数据让你分析,这个时候最好的方式是能建立一个数学模型

数据模型

所谓水无定势,兵无常法。不同的行业,有不同行业的特点,因此,从业务角度看,其相应的数据模型是千差万别的。在开始介绍数据模型之前,我们先看一个东西,那就是算法与数据结构,我们知道算法是解决特定问题的策略,数据结构处理问题的数学模型,数据结构 有三大要素,逻辑结构、存储结构、数据操作、这里的数据操作其实就是算法,例如我们定义的图的数据结构,然后在这个基础上对图进行操作形成特定的算法,例如深度遍历和广度遍历;我们的数据结构其实是针对特定的数据问题而抽象和设计的,也就是说一种数据结构针对的是一类特定的问题。

数据模型也一样,只不过数据结构是针对特定问题的,而数据模型是针对特定业务的,然后多业务进行抽象,形成了行业特征,在银行业,IBM 有自己的 BDWM(Banking data warehouse model),而 NCR 有自己的 FS-LDM 模型。在电信业,IBM 有 TDWM(Telecom Data warehouse model),而 NCR 有自己的 TS-LDM 模型。

因此,我们看到,不同的公司有自己针对某个行业的理解,因此会有不同的公司针对某个行业的模型。而对于不同的行业,同一个公司也会有不同的模型,这主要取决于不同行业的不同业务特点。

数据仓库的设计始于数据模型企业的数据模型适用于操作型环境,而修改后的模型适用于数仓,其实就是业务模型—> 概念模型—>逻辑模型—>物理模型的这一过程

今天的文章数仓建模—数据模型分享到此就结束了,感谢您的阅读,如果确实帮到您,您可以动动手指转发给其他人。

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。
如需转载请保留出处:https://bianchenghao.cn/26955.html

(0)
编程小号编程小号

相关推荐

发表回复

您的电子邮箱地址不会被公开。 必填项已用*标注