快速入门Flink(2)——Flink集群环境搭建(3台节点 建议收藏)

快速入门Flink(2)——Flink集群环境搭建(3台节点 建议收藏)        上一篇博客给大家介绍了一下Flink,今天大家带来Flink集群环境搭建。(建议收藏)一、Flink支持多种方式搭建(local,standalone,yarn)local(本地)——单机模式,一般不使用standalone——独立模式,Flink自带集群,开发测试环境使用yarn——计算资源统一由HadoopYARN管理,生产环境测试1.1准备工作JDK1.8以上(配置JA.

在这里插入图片描述
        上一篇博客给大家介绍了一下Flink,今天大家带来Flink集群环境搭建。(建议收藏)

一、Flink支持多种方式搭建(local,standalone,yarn)

  1. local( 本地) ——单机模式, 一般不使用
  2. standalone ——独立模式, Flink 自带集群,开发测试环境使用
  3. yarn——计算资源统一由 Hadoop YARN 管理,生产环境测试

1.1准备工作

  1. JDK1.8以上(配置JAVA_HOME环境变量)
  2. ssh 免密码登录【 集群内节点之间免密登录
  3. 下载按装包

1.2集群规划

node01(master+slave)、node02(slave) 、node03(slave)

1.3搭建集群实现步骤

  1. 解压 Flink 压缩包到指定目录
  2. 配置 Flink
  3. 配置 Slaves 节点
  4. 分发 Flink 到各个节点
  5. 启动集群
  6. 递交 wordcount 程序测试
  7. 查看 Flink WebUI

二、standalone模式环境搭建

  1. 将下载好的Flink安装包上传到指定目录
  2. 解压Flink到 /export/server 目录
tar -zxvf flink-1.7.2-bin-hadoop26-scala_2.11.tgz
  1. 修改安装目录下 conf 文件夹内的 flink-conf.yaml 配置文件, 指定 JobManager (指定管理者)
# 配置 Master 的机器名( IP 地址) node01 = 192.168.100.201
jobmanager.rpc.address: node01
# 配置每个 taskmanager 生成的临时文件夹
taskmanager.tmp.dirs: /export/servers/flink-1.7.2/tmp
  1. 修改安装目录下 conf 文件夹内的 slave 配置文件, 指定 TaskManager(指定工作节点)
# node01 = 192.168.100.201、 node02 = 192.168.100.202、 node03 = 192.168.100.203
node01
node02
node03
  1. 配置系统环境变量配置文件(vim /etc/profile.d/flink.sh),添加 HADOOP_CONF_DIR 目录
export HADOOP_CONF_DIR=/export/servers/hadoop-2.6.0-cdh5.14.0/etc/hadoop
  1. flink.sh这个文件发送到其他的节点上
scp -r /etc/profile.d/flink.sh node02:/etc/profile.d/ 
scp -r /etc/profile.d/flink.sh node03:/etc/profile.d/
  1. 每个节点重新加载环境变量
source /etc/profile
  1. 将配置好的 Flink 目录分发给其他的两台节点
for i in { 
   2..3}; do scp -r flink-1.7.2/ node0$i:$PWD; done
  1. 启动 Flink 集群
bin/start-cluster.sh
  1. 通过 jps 查看进程信息
--------------------- node01 ---------------- 
86583 Jps 
85963 StandaloneSessionClusterEntrypoi	nt 
86446 TaskManagerRunner 
--------------------- node02 ---------------- 
44099 Jps 
43819 TaskManagerRunner 
--------------------- node03 ---------------- 
29461 TaskManagerRunner 
29678 Jps
  1. 通过Flink自带的webUI来查看
    在这里插入图片描述
  2. 使用Flink来计算个任务进行测试
    12.1 启动HDFS集群
      start-all.sh
    12.2 在 HDFS 中创建/test/input 目录
      hadoop fs -mkdir -p /test/input
    12.3 上传 wordcount.txt 文件到 HDFS /test/input 目录
      hadoop fs -put /root/wordcount.txt /test/input
    12.4 提交任务进行计算
./flink run /export/servers/flink-1.7.2/examples/batch/WordCount.jar  --input hdfs://node01:8020/test/input/wordCount.txt  --output hdfs://node01:8020/test/output
  1. 通过Flink的webUI来查看(有一个任务已经跑成功)
    在这里插入图片描述
  2. 集群关闭
./bin/stop-cluster.sh

2.1Standalone 集群架构

在这里插入图片描述

  • client 客户端提交任务给 JobManager
  • JobManager 负责 Flink 集群计算资源管理, 并分发任务给 TaskManager 执行
  • TaskManager 定期向 JobManager 汇报状态

2.2 高可用 HA 模式

        从上述架构图中, 可发现 JobManager 存在单点故障, 一旦 JobManager 出现意外, 整 个集群无法工作。 所以, 为了确保集群的高可用, 需要搭建 Flink 的 HA。 ( 如果是 部署在 YARN 上, 部署 YARN 的 HA) , 我们这里演示如何搭建 Standalone 模式 HA。

2.3 HA 架构图

在这里插入图片描述

2.4集群规划

node01(master+slave) node02(master+slave) node03(slave)

2.5实现步骤

  1. 在 flink-conf.yaml 中添加 zookeeper 配置
  2. 将配置过的 HA 的 flink-conf.yaml 分发到另外两个节点
  3. 分别到另外两个节点中修改 flink-conf.yaml 中的配置
  4. 在 masters 配置文件中添加多个节点
  5. 分发 masters 配置文件到另外两个节点
  6. 启动 zookeeper 集群
  7. 启动 flink 集群

2.6具体操作

  1. 在 flink-conf.yaml 中添加 zookeeper 配置
#开启 HA, 使用文件系统作为快照存储
state.backend: filesystem 
#默认为 none, 用于指定 checkpoint 的 data files 和 meta data 存储的目录 
state.checkpoints.dir: hdfs://node01:8020/flink-checkpoints
 #默认为 none, 用于指定 savepoints 的默认目录 
 state.savepoints.dir: hdfs://node01:8020/flink-checkpoints 
 #使用 zookeeper 搭建高可用 high-availability: zookeeper 
 # 存储 JobManager 的元数据到 HDFS,用来恢复 JobManager 所需的所有元数据 
 high-availability.storageDir: hdfs://node01:8020/flink/ha/ 
 high-availability.zookeeper.quorum: node01:2181,node02:2181,node03:2181
  1. 将配置过的 HA 的 flink-conf.yaml 分发到另外两个节点
for i in { 
   2..3}; do scp -r /export/servers/flink-1.7.2/conf/flink-conf.yaml node0$i:$PWD; done
  1. 到节点 2 中修改 flink-conf.yaml 中的配置, 将 JobManager 设置为自己节点的 名称
jobmanager.rpc.address: node02
  1. masters 配置文件中添加多个节点
node01:8081 
node02:8081
  1. 分发 masters 配置文件到另外两个节点
for i in { 
   2..3}; do scp -r flink-1.7.2/ node0$i:$PWD; done
  1. 启动 zookeeper 集群
[root@node01 servers]# /export/servers/zookeeper-3.4.5-cdh5.14.0/bin/zkServer.sh start 
[root@node02 servers]# /export/servers/zookeeper-3.4.5-cdh5.14.0/bin/zkServer.sh start
[root@node03 servers]# /export/servers/zookeeper-3.4.5-cdh5.14.0/bin/zkServer.sh start
  1. 启动 flink 集群
[root@node01 flink-1.7.2]# bin/start-cluster.sh
Starting HA cluster with 2 masters. 
Starting standalonesession daemon on host node01.hadoop.com.
Starting standalonesession daemon on host node02.hadoop.com.
Starting taskexecutor daemon on host node01.hadoop.com. 
Starting taskexecutor daemon on host node02.hadoop.com. 
Starting taskexecutor daemon on host node03.hadoop.com
  1. 分别查看两个节点的 Flink Web UI
  2. kill 掉一个节点, 查看另外的一个节点的 Web UI

注意事项

切记搭建 HA, 需要将第二个节点的 jobmanager.rpc.address 修改为 node02

三、yarn 集群环境

在一个企业中, 为了最大化的利用集群资源, 一般都会在一个集群中同时运行多种类 型的 Workload。 因此 Flink 也支持在 Yarn 上面运行; flink on yarn 的前提是: hdfs、 yarn 均启动

3.1 准备工作

  1. jdk1.8 及以上【 配置 JAVA_HOME 环境变量】
  2. ssh 免密码登录【 集群内节点之间免密登录】
  3. 至少 hadoop2.2
  4. hdfs & yarn

3.2集群规划

node01(master) node02(slave) node03(slave)

3.3修改 hadoop 的配置参数

vim etc/hadoop/yarn-site.xml
<property> 
<name>yarn.nodemanager.vmem-check-enabled</name> 
<value>false</value> 
</property>

是否启动一个线程检查每个任务正使用的虚拟内存量,如果任务超出分配值,则 直接将其杀 掉,默认是 true。 在这里面我们需要关闭,因为对于 flink 使用 yarn 模式下,很容易内存超标,这个时候 yarn 会自动杀掉 job。

3.4修改全局变量/etc/profile.d/flink.sh

#添加:
export HADOOP_CONF_DIR=/export/servers/hadoop/etc/Hadoop 
#YARN_CONF_DIR 或者 HADOOP_CONF_DIR 必须将环境变量设置为读取 YARN 和 HDFS 配置

3.5 Flink on Yarn 的运行机制

在这里插入图片描述
从图中可以看出, Yarn 的客户端需要获取 hadoop 的配置信息,连接 Yarn 的 ResourceManager。 所以要有设置有 YARN_CONF_DIR 或者 HADOOP_CONF_DIR 或者 HADOOP_CONF_PATH,只要设置了其 中一个环境变量,就会被读取。如果读取上述 的变量失败了,那么将会选择 hadoop_home 的环境 变量,都区成功将会尝试加 载$HADOOP_HOME/etc/hadoop 的配置文件。

  1. 当启动一个 Flink Yarn 会话时,客户端首先会检查本次请求的资源是否足够。资源足够 将会上传包含 HDFS 配置信息和 Flink 的 jar 包到 HDFS。
  2. 随 后 客 户 端 会 向 Yarn 发 起 请 求 , 启 动 applicationMaster, 随 后 NodeManager 将 会 加 载 有 配 置 信 息 和 jar 包 , 一 旦 完 成 , ApplicationMaster(AM)便启动。
  3. 当 JobManager and AM 成功启动时,他们都属于同一个 container,从而 AM 就能检索到 JobManager 的地址。此时会生成新的 Flink 配置信息以便 TaskManagers 能够连接到 JobManager。同时,AM 也提供 Flink 的 WEB 接口。 用户可并行执行多个 Flink 会。.
  4. 随后,AM 将会开始为分发从 HDFS 中下载的 jar 以及配置文件的 container 给 TaskMangers.完成后 Fink 就完全启动并等待接收提交的 job。

3.6Flink on Yarn 的两种使用方式

3.6.1 yarn-session 提供两种模式

  1. 会话模式
            使用 Flink 中 的 yarn-session ( yarn 客 户 端 ) , 会 启 动 两 个 必 要 服 务 JobManager 和 TaskManagers
            客户端通过 yarn-session 提交作业 yarn-session 会一直启动,不停地接 收客户端提交的作用 ,有大量的小作业,适合使用这种方式。
    在这里插入图片描述
  2. 分离模式
    直接提交任务给 YARN ,大作业,适合使用这种方式
    在这里插入图片描述

3.6.2 第一种方式:YARN session

yarn-session.sh(开辟资源)+flink run(提交任务) 这种模式下会启动 yarn session,并且会启动 Flink 的两个必要服务:
JobManager 和 Task-managers,然后你可以向集群提交作业。同一个 Session 中可以提交多个 Flink 作业。需要注意的是,这种模式下 Hadoop 的版本至少 是 2.2,而且必须安装了 HDFS(因为启动 YARN session 的时候会向 HDFS 上 提交相关的 jar 文件和配置文件)
通过./bin/yarn-session.sh 脚本启动 YARN Session

-n,--container <arg> 分配多少个 yarn 容器 (=taskmanager 的数量) Optional -D <arg> 动态属性
-d,--detached 独立运行 (以分离模式运行作业) 
-id,--applicationId <arg> YARN 集群上的任务 id,附着到一个后台运行的 yarn session 中 
-j,--jar <arg> Path to Flink jar file -jm,--jobManagerMemory <arg> JobManager 的内存 [in MB]
-m,--jobmanager <host:port> 指定需要连接的 jobmanager(主节点)地址 ,使用这个参数可以指定一 个不同于配置文件中的 jobmanager 
-n,--container <arg> 分配多少个 yarn 容器 (=taskmanager 的数量) 
-nm,--name <arg> 在 YARN 上为一个自定义的应用设置一个名字 
-q,--query 显示 yarn 中可用的资源 (内存, cpu 核数) 
-qu,--queue <arg> 指定 YARN 队列 
-s,--slots <arg> 每个 TaskManager 使用的 slots 数量 
-st,--streaming 在流模式下启动 Flink 
-tm,--taskManagerMemory <arg> 每个 TaskManager 的内存 [in MB] 
-z,--zookeeperNamespace <arg> 针对 HA 模式在 zookeeper 上创建 NameSpace

注意:
如果不想让 Flink YARN 客户端始终运行,那么也可以启动分离的 YARN 会话。 该参数被称为 -d 或–detached。
启动:

bin/yarn-session.sh -n 2 -tm 800 -s 1 -d

上面的命令的意思是,同时向 Yarn 申请 3 个container(即便只申请了两个,因为ApplicationMaster和JobManager有一个额外的容器。一旦将Flink部署到YARN群集中,它就会显示JobManager的连接详细信息),其中2个Container启动TaskManager(-n2),每个TaskManager拥有1个TaskSlot(-s1),并且向每个TaskManager的Container申请800M的内存,以及一个ApplicationMaster(JobManager)。启动成功之后,去yarn页面:ip:8088 可以查看当前提交的 flink session。
在这里插入图片描述
点击 ApplicationMaster 进入任务页面:
在这里插入图片描述
上面的页面就是使用:yarn-session.sh 提交后的任务页面;

  • 然后使用 flink 提交任务
bin/flink run examples/batch/WordCount.jar
  • 在控制台中可以看到 wordCount.jar 计算出来的任务结果
    在这里插入图片描述
  • 在 yarn-session.sh 提交后的任务页面中也可以观察到当前提交的任务:
    在这里插入图片描述
  • 点击查看任务细节:
    在这里插入图片描述
  • 停止当前任务
yarn application -kill application_1527077715040_0007

3.6.3第二种方式:在 YARN 上运行一个 Flink 作业

上面的 YARN session 是在 Hadoop YARN 环境下启动一个 Flink cluster 集群,里面的资源 是可以共享给其他的 Flink 作业。我们还可以在 YARN 上启 动一个 Flink 作业,这里我们还是使 用./bin/flink,但是不需要事先启动 YARN session.

  • 使用 flink 直接提交任务
bin/flink run -m yarn-cluster -yn 2 ./examples/batch/WordCount.jar

以上命令在参数前加上 y 前缀,-yn 表示 TaskManager 个数
在 8088 页面观察:
在这里插入图片描述

  • 停止 yarn-cluster
yarn application -kill application 的 ID

注意如果使用的 是 flink on yarn 方式,想切换回 standalone 模式的话, 需要删除文件: 【/tmp/.yarn-properties-root】 因为默认查找当前 yarn 集群中已有的 yarn-session 信息中的 jobmanager

今天的文章快速入门Flink(2)——Flink集群环境搭建(3台节点 建议收藏)分享到此就结束了,感谢您的阅读,如果确实帮到您,您可以动动手指转发给其他人。

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。
如需转载请保留出处:https://bianchenghao.cn/30048.html

(0)
编程小号编程小号

相关推荐

发表回复

您的电子邮箱地址不会被公开。 必填项已用*标注