论文提出基于轮廓的实例分割方法Deep snake,轮廓调整是个很不错的方向,引入循环卷积,不仅提升了性能还减少了计算量,保持了实时性,但是Deep snake的大体结构不够优雅,应该还有一些工作可以补,推荐大家阅读
来源:晓飞的算法工程笔记 公众号
论文: Deep Snake for Real-Time Instance Segmentation

Introduction

实例分割是许多计算机视觉任务中的重要手段,目前大多数的算法都采用在给定的bbox中进行pixel-wise分割的方法。受snake算法和Curve-GCN的启发,论文采用基于轮廓的逐步调整策略,提出了Deep snake算法进行实时实例分割,该算法将初始轮廓逐渐优化为目标的边界,如图1所示,达到很好的性能且依然保持很高的实时性(32.3fps)。
论文的主要贡献如下:
- 提出基于学习的snake算法用于实时实例分割,对初始轮廓调整至目标边界,并且引入循环卷积(circular convolution)进行轮廓特征的学习。
- 提出two-stage流程进行实例分割,先初始化轮廓再调整轮廓,两个步骤均可以用于修正初始定位的误差。
- Deep snake能在多个实例分割数据集上达到SOTA,对于512的图片输入能达到32.3fps。
Proposed approach
Deep snake方法将初始轮廓逐渐优化为目标的边界来进行目标分割,即将物体轮廓作为输入,基于CNN主干特征预测每个顶点的偏移量。为了充分利用轮廓拓扑结构,论文使用循环卷积(circular convolution)进行顶点特征的学习,有助于学习轮廓的优化,并基于deep snake提出了一套实时实例分割的流程。
Learning-based snake algorithm
传统的snake算法将顶点的坐标作为变量来优化人工设计的能量函数(energy function),通过最小化能量函数来拟合目标边界。由于能量函数通常是非凸的,而且需要基于低维图像特征进行人工设计,通常会陷于局部最优解。
而deep snake则是直接从数据学习如何微调轮廓,对于



![Deep Snake : 基于轮廓调整的SOTA实例分割方法,速度32.3fps | CVPR 2020插图13 [F(x_i);x_i^{'}]](https://bianchenghao.cn/wp-content/uploads/2022/12/2022122605452522.jpg)









在获得顶点特征后,需要对轮廓特征进一步学习,顶点的特征可以视作1-D离散信号
![Deep Snake : 基于轮廓调整的SOTA实例分割方法,速度32.3fps | CVPR 2020插图31 k:[-r,r]\to \mathbb{R}^D](https://bianchenghao.cn/wp-content/uploads/2022/12/2022122605452522.jpg)


循环卷积操作如图2所示,与标准的卷积操作类似,可以很简单地集成到目前的网络中。在特征学习后,对每个顶点使用3个

图a展示了deep snake的细节结构,输入为初始轮廓,主干包含8个”CirConv-Bn-ReLU”层,每层都使用残差连接,Fusion block用于融合主干网络中的多尺度轮廓特征,Prediction head使用3个
Deep snake for instance segmentation

将deep snake加入到目标检测模型中进行实例分割,流程如图b所示。模型首先产生目标框,将其构建成菱形框,然后使用deep snake算法将菱形顶点调整为目标极点,构造八边形轮廓,最后进行迭代式deep snake轮廓调整得到目标形状
-
Initial contour proposal
论文采用ExtreNet的极点思想,能够很好地包围物体。在得到矩形框后,获取4条边的中心点



-
Contour deformation
对八边形平均采样




轮廓是目标空间位置的一种扩展表示方法,通过调整轮廓到物体边缘能够帮助解决detector的定位误差
-
Handling multi-component objects

由于遮挡,一个实例可能包含多个组件,然而一个轮廓只能勾勒出bbox内的一个组件。为了解决这个问题,使用RoIAlign来提取初始bbox特征,然后配合detector来检测组件的box,再对每个box进行上述的轮廓调整,最后结合初始bbox内相同类别的组件输出最终的物体形状。
Implementation details
Training strategy

极点的损失函数如公式3,

迭代轮廓调整的损失函数如公式4,

Detector
使用CenterNet作为检测器,对于物体检测,使用跟原来一样的设定输出类别相关的box,而对于组件检测,则使用类不可知的CenterNet,对于


Experiments
Ablation studies

Baseline将轮廓视为图结构,然后使用GCN进行轮廓调整,初始轮廓为围绕bbox的椭圆,Arichitecture加入Fusion block,Initial proposal加入论文的轮廓初始化方法,最后是将GCN修改为循环卷积,可以看到每个步骤都对AP有提升。

论文也对比了卷积类型以及迭代次数对结构的影响,可以看到循环卷积的结果比GCN要好。

Comparison with the state-of-the-art methods





论文在不同的数据集上都取得了不错的效果,作者在每个数据集上的训练参数都有点不一样,具体参数可以看看原文
Running time

Conclusion
论文提出基于轮廓的实例分割方法Deep snake,轮廓调整是个很不错的方向,引入循环卷积,不仅提升了性能还减少了计算量,保持了实时性,但是Deep snake的大体结构不够优雅,应该还有一些工作可以补,推荐大家阅读
参考内容
- Snakes: Active Contour Models – www.cs.ait.ac.th/~mdailey/cv…
- Fast Interactive Object Annotation with Curve-GCN – arxiv.org/pdf/1903.06…
如果本文对你有帮助,麻烦点个赞或在看呗~
更多内容请关注 微信公众号【晓飞的算法工程笔记】

今天的文章Deep Snake : 基于轮廓调整的SOTA实例分割方法,速度32.3fps | CVPR 2020分享到此就结束了,感谢您的阅读。
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。
如需转载请保留出处:https://bianchenghao.cn/59596.html