世界七大数学难题与Hilbert的23个问题

世界七大数学难题与Hilbert的23个问题世界七大数学难题与Hilbert的23个问题_两点间以直线为距离最短线问题

分享一下我老师大神的人工智能教程!零基础,通俗易懂!世界七大数学难题与Hilbert的23个问题

也欢迎大家转载本篇文章。分享知识,造福人民,实现我们中华民族伟大复兴!

               

                 世界七大数学难题与Hilbert的23个问题

July、二零一一年二月十三日
本文参考:1987年版《数学家小辞典》、百度百科、维基百科
—————————————-

世界七大数学难题 
  这七个“千年大奖问题”是:
NP完全问题、霍奇猜想、庞加莱猜想、黎曼假设、杨-米尔斯理论、纳卫尔-斯托可方程、BSD猜想。

千年大奖问题
  美国麻州的克雷(Clay)数学研究所于2000年5月24日在巴黎法兰西学院宣布了一件被媒体炒得火热的大事:对七个“千年数学难题”的每一个悬赏一百万美元。   

其中有一个已被解决(庞加莱猜想),还剩六个.(庞加莱猜想,已由俄罗斯数学家格里戈里·佩雷尔曼激活成功教程。我国中山大学朱熹平教授和旅美数学家、清华大学兼职教授曹怀东做了证明的封顶工作。)   

“千年大奖问题”公布以来, 在世界数学界产生了强烈反响。
这些问题都是关于数学基本理论的,但这些问题的解决将对数学理论的发展和应用的深化产生巨大推动。

认识和研究“千年大奖问题”已成为世界数学界的热点。不少国家的数学家正在组织联合攻关。 可以预期, “千年大奖问题” 将会改变新世纪数学发展的历史进程。

一、P问题对NP问题
  在一个周六的晚上,你参加了一个盛大的晚会。由于感到局促不安,你想知道这一大厅中是否有你已经认识的人。
你的主人向你提议说,你一定认识那位正在甜点盘附近角落的女士罗丝。不费一秒钟,你就能向那里扫视,并且发现你的主人是正确的。然而,如果没有这样的暗示,你就必须环顾整个大厅,一个个地审视每一个人,看是否有你认识的人。

生成问题的一个解通常比验证一个给定的解时间花费要多得多。这是这种一般现象的一个例子。

与此类似的是,如果某人告诉你,数13,717,421可以写成两个较小的数的乘积,你可能不知道是否应该相信他,但是如果他告诉你它可以因式分解为3607乘上3803,那么你就可以用一个袖珍计算器容易验证这是对的。

人们发现,所有的完全多项式非确定性问题,都可以转换为一类叫做满足性问题的逻辑运算问题。
既然这类问题的所有可能答案,都可以在多项式时间内计算,人们于是就猜想,是否这类问题,存在一个确定性算法,可以在多项式时间内,直接算出或是搜寻出正确的答案呢?这就是著名的NP=P?的猜想。

不管我们编写程序是否灵巧,判定一个答案是可以很快利用内部知识来验证,还是没有这样的提示而需要花费大量时间来求解,被看作逻辑和计算机科学中最突出的问题之一。它是斯蒂文·考克于1971年陈述的。
===============
我觉得,像以上这样,介绍P与NP问题,比算法导论上的阐述更易于初学者理解。
单凭这点,此文就有意义了。当然,P与NP完全问题,日后,会在本BLOG内具体而深入阐述。
July、二零一一年二月十三日。

二、霍奇(Hodge)猜想

今天的文章世界七大数学难题与Hilbert的23个问题分享到此就结束了,感谢您的阅读。

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。
如需转载请保留出处:https://bianchenghao.cn/61725.html

(0)
编程小号编程小号

相关推荐

发表回复

您的电子邮箱地址不会被公开。 必填项已用*标注