一、什么是CRC校验算法
最近在学网络时在以太网的数据帧的末尾有一个叫CRC校验码的东西,遂不解。于是便一起学习一下,什么是CRC校验码。
CRC就是循环冗余校验码(Cyclic Redundancy Check),是数据通信领域常见的差错校验码,特征是信息字段和校验字段的长度可以任意的选定。
循环冗余检查(CRC)是一种数据传输检错功能,对数据进行多项式计算,并将得到的结果附在帧的后面,接受设备也执行类似的算法来保证数据传输的正确性和完整性。
二、CRC校验算法的算法的原理
CRC校验算法的原理就是:原始帧数据发送之前,在n个bit位的原始数据后面加上通过特定运算得到的K位校验序列,组成新的帧来发送给接收端。接收端会根据原始数据后的校验序列再次进行特定的运算,若正确则接受,若结果错误则丢弃。
把上面的K位校验码序列就称为:FCS
CRC校验算法原理的示图如下:
我们把特定的运算就称为异或运算。
这样看来CRC校验算法也就是把原始数据通过异或运算得到FCS,接收端根据原始数据再次运算如果相等那么就接收。那么CRC算法的核心就是如何得到FCS。
假设要发送的数据是M,M里面有K个数据,现在要计算冗余码。冗余码的计算方法如下:
1、用二进制模2运算来进行2^n*M也就是M左移了n位,也即是在M的后面加上了n个0,现在M的长度就是K+n
2、用M去除收发双方事先商定的长度为n+1的除数p,得到余数是R
3、这个R就是FCS(帧检验序列),将这个FCS序列加到M后面发出去就行了。
最后接收端对数据进行CRC校验,若余数为R就表示这个帧没有错,就接受。若R不为0表示这个帧出错就丢弃。
一般在数据传输之前,发送端与接收端会相互约定好一个除数(也是一个二进制序列,用来进行模2算法)。这个除数就是生成多项式。这个多项式的最高位和最低位必须为1。
常见的生成多项式为:
CRC8=X8+X5+X4+1(100110001)
CRC-CCITT=X16+X12+X5+1(1001000000100001)
CRC16=X16+X15+X5+1(11000000000100001)
CRC12=X12+X11+X3+X2+1(1100000001101)
CRC32=X32+X26+X23+X22+X16+X12+X11+X10+X8+X7+X5+X4+X2+X1+1
(100000100110000010001110110011111)
给个栗子吧:
M= 101001,p = 1101,n = 3
M是要发送的数据,p是除数,n是在M后面差错检测的n位冗余码
发送端:
M=(2^n*M),所以M=101001000
用M除以p:
得到的余数是FCS,将其加到M的后面就是要发送的帧
M = 101001000 + FCS = 101001001
接收端:
接收到的每一帧都要进行差错检验,假设收到的101001001,p=1101,具体如下:
我们可以看到最后的余数R=0,没有出错,所以信息是被接收的。
三、CRC算法的编程实现
下面我们通过一个栗子来说明是如何实现CRC校验的,生成多项式为:100110001(简记0x31),也就是CRC-8
计算步骤如下:
(1) 将CRC寄存器(8-bits,比生成多项式少1bit)赋初值0
(2) 在待传输信息流后面加入8个0
(3) While (数据未处理完)
(4) Begin
(5) If (CRC寄存器首位是1)
(6) reg = reg XOR 0x31
(7) CRC寄存器左移一位,读入一个新的数据于CRC寄存器的0 bit的位置。
(8) End
(9) CRC寄存器就是我们所要求的余数。
程序实现的示图:
代码展示:(代码来自参考文章的链接里面)
代码是C++实现了CRC8、CRC16和CRC32,代码参考如下:
#ifndef CRCCOMPUTE_H
#define CRCCOMPUTE_H
#include <stdint.h>
template <typename TYPE> class CRC
{
public:
CRC();
CRC(TYPE polynomial, TYPE init_remainder, TYPE final_xor_value);
void build(TYPE polynomial, TYPE init_remainder, TYPE final_xor_value);
/** * Compute the CRC checksum of a binary message block. * @para message, 用来计算的数据 * @para nBytes, 数据的长度 */
TYPE crcCompute(char * message, unsigned int nBytes);
TYPE crcCompute(char * message, unsigned int nBytes, bool reinit);
protected:
TYPE m_polynomial;
TYPE m_initial_remainder;
TYPE m_final_xor_value;
TYPE m_remainder;
TYPE crcTable[256];
int m_width;
int m_topbit;
/** * Initialize the CRC lookup table. * This table is used by crcCompute() to make CRC computation faster. */
void crcInit(void);
};
template <typename TYPE>
CRC<TYPE>::CRC()
{
m_width = 8 * sizeof(TYPE);
m_topbit = 1 << (m_width - 1);
}
template <typename TYPE>
CRC<TYPE>::CRC(TYPE polynomial, TYPE init_remainder, TYPE final_xor_value)
{
m_width = 8 * sizeof(TYPE);
m_topbit = 1 << (m_width - 1);
m_polynomial = polynomial;
m_initial_remainder = init_remainder;
m_final_xor_value = final_xor_value;
crcInit();
}
template <typename TYPE>
void CRC<TYPE>::build(TYPE polynomial, TYPE init_remainder, TYPE final_xor_value)
{
m_polynomial = polynomial;
m_initial_remainder = init_remainder;
m_final_xor_value = final_xor_value;
crcInit();
}
template <typename TYPE>
TYPE CRC<TYPE>::crcCompute(char * message, unsigned int nBytes)
{
unsigned int offset;
unsigned char byte;
TYPE remainder = m_initial_remainder;
/* Divide the message by the polynomial, a byte at a time. */
for( offset = 0; offset < nBytes; offset++)
{
byte = (remainder >> (m_width - 8)) ^ message[offset];
remainder = crcTable[byte] ^ (remainder << 8);
}
/* The final remainder is the CRC result. */
return (remainder ^ m_final_xor_value);
}
template <typename TYPE>
TYPE CRC<TYPE>::crcCompute(char * message, unsigned int nBytes, bool reinit)
{
unsigned int offset;
unsigned char byte;
if(reinit)
{
m_remainder = m_initial_remainder;
}
/* Divide the message by the polynomial, a byte at a time. */
for( offset = 0; offset < nBytes; offset++)
{
byte = (m_remainder >> (m_width - 8)) ^ message[offset];
m_remainder = crcTable[byte] ^ (m_remainder << 8);
}
/* The final remainder is the CRC result. */
return (m_remainder ^ m_final_xor_value);
}
class CRC8 : public CRC<uint8_t>
{
public:
enum CRC8_TYPE {eCRC8, eAUTOSAR, eCDMA2000, eDARC, eDVB_S2, eEBU, eAES, eGSM_A, eGSM_B, eI_CODE,
eITU, eLTE, eMAXIM, eOPENSAFETY, eROHC, eSAE_J1850, eWCDMA};
CRC8(CRC8_TYPE type);
CRC8(uint8_t polynomial, uint8_t init_remainder, uint8_t final_xor_value)
:CRC<uint8_t>(polynomial, init_remainder, final_xor_value){}
};
class CRC16 : public CRC<uint16_t>
{
public:
enum CRC16_TYPE {eCCITT, eKERMIT, eCCITT_FALSE, eIBM, eARC, eLHA, eSPI_FUJITSU,
eBUYPASS, eVERIFONE, eUMTS, eCDMA2000, eCMS, eDDS_110, eDECT_R,
eDECT_X, eDNP, eEN_13757, eGENIBUS, eEPC, eDARC, eI_CODE, eGSM,
eLJ1200, eMAXIM, eMCRF4XX, eOPENSAFETY_A, eOPENSAFETY_B, ePROFIBUS,
eIEC_61158_2, eRIELLO, eT10_DIF, eTELEDISK, eTMS37157, eUSB,
eCRC_A, eMODBUS, eX_25, eCRC_B, eISO_HDLC, eIBM_SDLC, eXMODEM,
eZMODEM, eACORN, eLTE};
CRC16(CRC16_TYPE type);
CRC16(uint16_t polynomial, uint16_t init_remainder, uint16_t final_xor_value)
:CRC<uint16_t>(polynomial, init_remainder, final_xor_value){}
};
class CRC32 : public CRC<uint32_t>
{
public:
enum CRC32_TYPE {eADCCP, ePKZIP, eCRC32, eAAL5, eDECT_B, eB_CRC32, eBZIP2, eAUTOSAR,
eCRC32C, eCRC32D, eMPEG2, ePOSIX, eCKSUM, eCRC32Q, eJAMCRC, eXFER};
CRC32(CRC32_TYPE type);
};
#endif // CRCCOMPUTE_H
#include "crcCompute.h"
template <typename TYPE>
void CRC<TYPE>::crcInit(void)
{
TYPE remainder;
TYPE dividend;
int bit;
/* Perform binary long division, a bit at a time. */
for(dividend = 0; dividend < 256; dividend++)
{
/* Initialize the remainder. */
remainder = dividend << (m_width - 8);
/* Shift and XOR with the polynomial. */
for(bit = 0; bit < 8; bit++)
{
/* Try to divide the current data bit. */
if(remainder & m_topbit)
{
remainder = (remainder << 1) ^ m_polynomial;
}
else
{
remainder = remainder << 1;
}
}
/* Save the result in the table. */
crcTable[dividend] = remainder;
}
}
CRC8::CRC8(CRC8_TYPE type)
{
switch (type)
{
case eCRC8:
m_polynomial = 0x07; //http://reveng.sourceforge.net/crc-catalogue/all.htm
m_initial_remainder = 0x00;
m_final_xor_value = 0x00;
break;
case eAUTOSAR:
m_polynomial = 0x2f;
m_initial_remainder = 0xff;
m_final_xor_value = 0xff;
break;
case eCDMA2000:
m_polynomial = 0x9b;
m_initial_remainder = 0xFF;
m_final_xor_value = 0x00;
break;
case eDARC:
m_polynomial = 0x39;
m_initial_remainder = 0x00;
m_final_xor_value = 0x00;
break;
case eDVB_S2:
m_polynomial = 0xd5;
m_initial_remainder = 0x00;
m_final_xor_value = 0x00;
break;
case eEBU:
case eAES:
m_polynomial = 0x1d;
m_initial_remainder = 0xFF;
m_final_xor_value = 0x00;
break;
case eGSM_A:
m_polynomial = 0x1d;
m_initial_remainder = 0x00;
m_final_xor_value = 0x00;
break;
case eGSM_B:
m_polynomial = 0x49;
m_initial_remainder = 0x00;
m_final_xor_value = 0xFF;
break;
case eI_CODE:
m_polynomial = 0x1d;
m_initial_remainder = 0xFD;
m_final_xor_value = 0x00;
break;
case eITU:
m_polynomial = 0x07;
m_initial_remainder = 0x00;
m_final_xor_value = 0x55;
break;
case eLTE:
m_polynomial = 0x9b;
m_initial_remainder = 0x00;
m_final_xor_value = 0x00;
break;
case eMAXIM:
m_polynomial = 0x31;
m_initial_remainder = 0x00;
m_final_xor_value = 0x00;
break;
case eOPENSAFETY:
m_polynomial = 0x2f;
m_initial_remainder = 0x00;
m_final_xor_value = 0x00;
break;
case eROHC:
m_polynomial = 0x07;
m_initial_remainder = 0xff;
m_final_xor_value = 0x00;
break;
case eSAE_J1850:
m_polynomial = 0x1d;
m_initial_remainder = 0xff;
m_final_xor_value = 0xff;
break;
case eWCDMA:
m_polynomial = 0x9b;
m_initial_remainder = 0x00;
m_final_xor_value = 0x00;
break;
default:
m_polynomial = 0x07;
m_initial_remainder = 0x00;
m_final_xor_value = 0x00;
break;
}
crcInit();
}
CRC16::CRC16(CRC16_TYPE type)
{
switch (type)
{
case eCCITT_FALSE:
case eMCRF4XX:
m_polynomial = 0x1021;
m_initial_remainder = 0xFFFF;
m_final_xor_value = 0x0000;
break;
case eIBM:
case eARC:
case eLHA:
case eBUYPASS:
case eVERIFONE:
case eUMTS:
m_polynomial = 0x8005;
m_initial_remainder = 0x0000;
m_final_xor_value = 0x0000;
break;
case eSPI_FUJITSU:
m_polynomial = 0x1021;
m_initial_remainder = 0x1d0f;
m_final_xor_value = 0x0000;
break;
case eCCITT:
case eKERMIT:
case eXMODEM:
case eZMODEM:
case eACORN:
case eLTE:
m_polynomial = 0x1021;
m_initial_remainder = 0x0000;
m_final_xor_value = 0x0000;
break;
case eCDMA2000:
m_polynomial = 0xc867;
m_initial_remainder = 0xffff;
m_final_xor_value = 0x0000;
break;
case eCMS:
case eMODBUS:
m_polynomial = 0x8005;
m_initial_remainder = 0xffff;
m_final_xor_value = 0x0000;
break;
case eDDS_110:
m_polynomial = 0x8005;
m_initial_remainder = 0x800d;
m_final_xor_value = 0x0000;
break;
case eDECT_R:
m_polynomial = 0x0589;
m_initial_remainder = 0x0000;
m_final_xor_value = 0x0001;
break;
case eDECT_X:
m_polynomial = 0x0589;
m_initial_remainder = 0x0000;
m_final_xor_value = 0x0000;
break;
case eDNP:
case eEN_13757:
m_polynomial = 0x3d65;
m_initial_remainder = 0x0000;
m_final_xor_value = 0xffff;
break;
case eGENIBUS:
case eEPC:
case eDARC:
case eI_CODE:
case eX_25:
case eCRC_B:
case eISO_HDLC:
case eIBM_SDLC:
m_polynomial = 0x1021;
m_initial_remainder = 0xffff;
m_final_xor_value = 0xffff;
break;
case eGSM:
m_polynomial = 0x1021;
m_initial_remainder = 0x0000;
m_final_xor_value = 0xffff;
break;
case eLJ1200:
m_polynomial = 0x6f63;
m_initial_remainder = 0x0000;
m_final_xor_value = 0x0000;
break;
case eMAXIM:
m_polynomial = 0x8005;
m_initial_remainder = 0x0000;
m_final_xor_value = 0xffff;
break;
case eOPENSAFETY_A:
m_polynomial = 0x5935;
m_initial_remainder = 0x0000;
m_final_xor_value = 0x0000;
break;
case eOPENSAFETY_B:
m_polynomial = 0x755b;
m_initial_remainder = 0x0000;
m_final_xor_value = 0x0000;
break;
case ePROFIBUS:
case eIEC_61158_2:
m_polynomial = 0x1dcf;
m_initial_remainder = 0xffff;
m_final_xor_value = 0xffff;
break;
case eRIELLO:
m_polynomial = 0x1021;
m_initial_remainder = 0xb2aa;
m_final_xor_value = 0x0000;
break;
case eT10_DIF:
m_polynomial = 0x8bb7;
m_initial_remainder = 0x0000;
m_final_xor_value = 0x0000;
break;
case eTELEDISK:
m_polynomial = 0xa097;
m_initial_remainder = 0x0000;
m_final_xor_value = 0x0000;
break;
case eTMS37157:
m_polynomial = 0x1021;
m_initial_remainder = 0x89ec;
m_final_xor_value = 0x0000;
break;
case eUSB:
m_polynomial = 0x8005;
m_initial_remainder = 0xffff;
m_final_xor_value = 0xffff;
break;
case eCRC_A:
m_polynomial = 0x1021;
m_initial_remainder = 0xc6c6;
m_final_xor_value = 0x0000;
break;
default:
m_polynomial = 0x8005;
m_initial_remainder = 0x0000;
m_final_xor_value = 0x0000;
break;
}
crcInit();
}
CRC32::CRC32(CRC32_TYPE type)
{
switch (type)
{
case eADCCP:
case ePKZIP:
case eCRC32:
case eBZIP2:
case eAAL5:
case eDECT_B:
case eB_CRC32:
m_polynomial = 0x04c11db7;
m_initial_remainder = 0xFFFFFFFF;
m_final_xor_value = 0xFFFFFFFF;
break;
case eAUTOSAR:
m_polynomial = 0xf4acfb13;
m_initial_remainder = 0xFFFFFFFF;
m_final_xor_value = 0xFFFFFFFF;
break;
case eCRC32C:
m_polynomial = 0x1edc6f41;
m_initial_remainder = 0xFFFFFFFF;
m_final_xor_value = 0xFFFFFFFF;
break;
case eCRC32D:
m_polynomial = 0xa833982b;
m_initial_remainder = 0xFFFFFFFF;
m_final_xor_value = 0xFFFFFFFF;
break;
case eMPEG2:
case eJAMCRC:
m_polynomial = 0x04c11db7;
m_initial_remainder = 0xFFFFFFFF;
m_final_xor_value = 0x00000000;
break;
case ePOSIX:
case eCKSUM:
m_polynomial = 0x04c11db7;
m_initial_remainder = 0x00000000;
m_final_xor_value = 0xFFFFFFFF;
break;
case eCRC32Q:
m_polynomial = 0x814141ab;
m_initial_remainder = 0x00000000;
m_final_xor_value = 0x00000000;
break;
case eXFER:
m_polynomial = 0x000000af;
m_initial_remainder = 0x00000000;
m_final_xor_value = 0x00000000;
break;
default:
m_polynomial = 0x04C11DB7;
m_initial_remainder = 0xFFFFFFFF;
m_final_xor_value = 0xFFFFFFFF;
break;
}
crcInit();
}
#include <iostream>
#include <stdio.h>
#include "crcCompute.h"
using namespace std;
int main(int argc, char *argv[])
{
CRC16 crc16(CRC16::eCCITT_FALSE);
char data1[] = {
'1', '2', '3', '4', '5', '6', '7', '8', '9'};
char data2[] = {
'5', '6', '7', '8', '9'};
unsigned short c1, c2;
c1 = crc16.crcCompute(data1, 9);
c2 = crc16.crcCompute(data1, 4, true);
c2 = crc16.crcCompute(data2, 5, false);
printf("%04x\n", c1);
printf("%04x\n", c2);
return 0;
}
参考文章:
CRC校验算法
今天的文章CRC校验算法_crc校验算法原理及实现分享到此就结束了,感谢您的阅读。
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。
如需转载请保留出处:https://bianchenghao.cn/69213.html