本次介绍PReLU激活函数,方法来自于何凯明paper 《Delving Deep into Rectifiers:Surpassing Human-Level Performance on ImageNet Classification》.
PReLU激活
PReLU(Parametric Rectified Linear Unit), 顾名思义:带参数的ReLU。二者的定义和区别如下图:
如果ai=0,那么PReLU退化为ReLU;如果ai是一个很小的固定值(如ai=0.01),则PReLU退化为Leaky ReLU(LReLU)。 有实验证明,与ReLU相比,LReLU对最终的结果几乎没什么影响。
PReLU的几点说明
(1) PReLU只增加了极少量的参数,也就意味着网络的计算量以及过拟合的危险性都只增加了一点点。特别的,当不同channels使用相同的ai时,参数就更少了。
(2) BP更新ai时,采用的是带动量的更新方式,如下图:
上式的两个系数分别是动量和学习率。
需要特别注意的是:更新ai时不施加权重衰减(L2正则化),因为这会把ai很大程度上push到0。事实上,即使不加正则化,试验中ai也很少有超过1的。
(3) 整个论文,ai被初始化为0.25。
今天的文章深度学习——PReLU激活「建议收藏」分享到此就结束了,感谢您的阅读。
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。
如需转载请保留出处:http://bianchenghao.cn/75224.html