1、当因变量(结果变量)不止一个时,可用多元方差分析(MANOVA)对它们同时进行分析。
library(MASS)
attach(UScereal)
y <- cbind(calories, fat, sugars)
aggregate(y, by = list(shelf), FUN = mean)
Group.1 calories fat sugars
1 1 119.4774 0.6621338 6.295493
2 2 129.8162 1.3413488 12.507670
3 3 180.1466 1.9449071 10.856821
cov(y)
calories fat sugars
calories 3895.24210 60.674383 180.380317
fat 60.67438 2.713399 3.995474
sugars 180.38032 3.995474 34.050018
fit <- manova(y ~ shelf)
summary(fit)
Df Pillai approx F num Df den Df Pr(>F)
shelf 1 0.19594 4.955 3 61 0.00383 **
Residuals 63
—
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
summary.aov(fit)
Response calories :
Df Sum Sq Mean Sq F value Pr(>F)
shelf 1 45313 45313 13.995 0.0003983 ***
Residuals 63 203982 3238
—
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Response fat :
Df Sum Sq Mean Sq F value Pr(>F)
shelf 1 18.421 18.4214 7.476 0.008108 **
Residuals 63 155.236 2.4641
—
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Response sugars :
Df Sum Sq Mean Sq F value Pr(>F)
shelf 1 183.34 183.34 5.787 0.01909 *
Residuals 63 1995.87 31.68
—
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
2、评估假设检验
单因素多元方差分析有两个前提假设,一个是多元正态性,一个是方差—协方差矩阵同质性。
(1)多元正态性
第一个假设即指因变量组合成的向量服从一个多元正态分布。可以用Q-Q图来检验该假设条件。
center <- colMeans(y)
n <- nrow(y)
p <- ncol(y)
cov <- cov(y)
d <- mahalanobis(y, center, cov)
coord <- qqplot(qchisq(ppoints(n), df = p), d, main = “QQ
Plot Assessing Multivariate Normality”,
ylab = “Mahalanobis D2”)
abline(a = 0, b = 1)
identify(coord$x, coord$y, labels = row.names(UScereal))
如果所有的点都在直线上,则满足多元正太性。
2、方差—协方差矩阵同质性即指各组的协方差矩阵相同,通常可用Box’s M检验来评估该假设
3、检测多元离群点
library(mvoutlier)
outliers <- aq.plot(y)
outliers
今天的文章r语言 多因素方差分析_r语言怎么算某一行数据方差分享到此就结束了,感谢您的阅读。
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。
如需转载请保留出处:http://bianchenghao.cn/78832.html