一.Series的基本概念及创建
1.Serise的相关概念
# Series 数据结构
# Series 是带有标签的一维数组,可以保存任何数据类型(整数,字符串,浮点数,Python对象等),轴标签统称为索引
import numpy as np
import pandas as pd
# 导入numpy、pandas模块
s = pd.Series(np.random.rand(5))
print(s)
print(type(s))
# 查看数据、数据类型
print(s.index,type(s.index))
print(s.values,type(s.values))
# .index查看series索引,类型为rangeindex
# .values查看series值,类型是ndarray
# 核心:series相比于ndarray,是一个自带索引index的数组 → 一维数组 + 对应索引
# 所以当只看series的值的时候,就是一个ndarray
# series和ndarray较相似,索引切片功能差别不大
# series和dict相比,series更像一个有顺序的字典(dict本身不存在顺序),其索引原理与字典相似(一个用key,一个用index)
0 0.229773
1 0.357622
2 0.546116
3 0.734517
4 0.686645
dtype: float64
<class 'pandas.core.series.Series'>
RangeIndex(start=0, stop=5, step=1) <class 'pandas.indexes.range.RangeIndex'>
[ 0.22977307 0.35762236 0.54611623 0.73451707 0.68664496] <class 'numpy.ndarray'>
2.Serise的创建
# Series 创建方法一:由字典创建,字典的key就是index,values就是values
dic = {
'a':1 ,'b':2 , 'c':3, '4':4, '5':5}
s = pd.Series(dic)
print(s)
# 注意:key肯定是字符串,假如values类型不止一个会怎么样?(数据类型会变成object) → dic = {'a':1 ,'b':'hello' , 'c':3, '4':4, '5':5}
# index也可以是字符串
4 4
5 5
a 1
b 2
c 3
dtype: int64
# Series 创建方法二:由数组创建(一维数组)
arr = np.random.randn(5)
s = pd.Series(arr)
print(arr)
print(s)
# 默认index是从0开始,步长为1的数字
s = pd.Series(arr, index = ['a','b','c','d','e'],dtype = np.object)
print(s)
# index参数:设置index,长度保持一致
# dtype参数:设置数值类型
# name参数,类似表名
[ 0.11206121 0.1324684 0.59930544 0.34707543 -0.15652941]
0 0.112061
1 0.132468
2 0.599305
3 0.347075
4 -0.156529
dtype: float64
a 0.112061
b 0.132468
c 0.599305
d 0.347075
e -0.156529
dtype: object
# Series 创建方法三:由标量创建
s = pd.Series(10, index = range(4))
print(s)
# 如果data是标量值,则必须提供索引。该值会重复,来匹配索引的长度
0 10
1 10
2 10
3 10
dtype: int64
3.Series的名称属性:name
# Series 名称属性:name
s1 = pd.Series(np.random.randn(5))
print(s1)
print('-----')
s2 = pd.Series(np.random.randn(5),name = 'test')
print(s2)
print(s1.name, s2.name,type(s2.name))
# name为Series的一个参数,创建一个数组的 名称
# .name方法:输出数组的名称,输出格式为str,如果没用定义输出名称,输出为None
s3 = s2.rename('hehehe')
print(s3)
print(s3.name, s2.name)
# .rename()重命名一个数组的名称,并且新指向一个数组,原数组不变
0 -0.403084
1 1.369383
2 1.134319
3 -0.635050
4 1.680211
dtype: float64
--
今天的文章pandas数据结构series_pandas的series函数分享到此就结束了,感谢您的阅读。
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。
如需转载请保留出处:https://bianchenghao.cn/80733.html