一维卷积神经网络原理_pytorch神经网络搭建「建议收藏」

一维卷积神经网络原理_pytorch神经网络搭建「建议收藏」论文地址:https://arxiv.org/pdf/2006.11538.pdfgithub:https://github.com/iduta/pyconv作者认为,当前CNN主要存在两个不足:(1)实际的感受野不

论文链接:https://arxiv.org/pdf/2006.11538.pdf
源码链接:https://github.com/iduta/pyconv

在这里插入图片描述
今年论文提出很多在一般backbone上通过添加小模块用于提升分类分割目标检测等任务的精度。下面介绍DeepMind提出的Pyramidal Convolution:Rethinking Convolutional Neural Networks for Visual Recognition
在这里插入图片描述

Motivation

尽可能引入少的参数和计算代价,增大backbone的感受野

Method

类似Inception分支和ASPP模块,提出使用不同卷积核的多分支网络。与类似模块大部分使用不同空洞卷积核的是PyConv提出使用分组卷积的思想。PyConv中多分支使用不同大小的卷积核,论文中包括33,55,77,99的卷积核。一般的,较小的卷积核感受野较小,可以得到小目标和局部细节信息。较大的卷积核感受野较大,可以得到大目标和全局语义信息。分组卷积是将输入特征图切分成不同组,使用卷积核独立处理。论文中提出两个版本,PyConv和PyHGConv。PyConv中使用相对较小的分组数,包括16,8,4,2。PyHGConv使用较大的分组数,包括32和64。在backbone结合时考虑到特征图的空间尺寸减小,分支数逐渐减少。最初阶段特征图通过四个分支,最后阶段特征图仅使用一个分支。语义分割任务中在一般网络中添加局部PyConv模块和全局PyConv模块。这两个模块都包括使用1*1卷积将通道数增加到512,后使用四分支的PyConv模块,卷积核包括9,7,5,3,分组数分别为16,8,4,2。不同的是全局PyConv模块需要使用Adaptive平均池化层减少特征图大小同时提取全局特征。PyConv分支后使用上采样恢复原始尺寸。之后将局部PyConv提取的特征和全局PyConv提取的特征合并。

Experiment

该模块在ImageNet图像分类数据集任务上表现如下:

在这里插入图片描述
近年知名插件比较如下:

在这里插入图片描述
该模块在ADE20k语义分割数据集上表现如下:

在这里插入图片描述

今天的文章一维卷积神经网络原理_pytorch神经网络搭建「建议收藏」分享到此就结束了,感谢您的阅读。

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。
如需转载请保留出处:https://bianchenghao.cn/86637.html

(0)
编程小号编程小号

相关推荐

发表回复

您的电子邮箱地址不会被公开。 必填项已用 * 标注