广度优先搜索原理_深度优先算法时间复杂度

广度优先搜索原理_深度优先算法时间复杂度广度优先搜索(BFS)是一种重要的图遍历算法,用于在横向运动中搜索图的所有顶点

概述

        广度优先搜索(BFS)是一种重要的图遍历算法,用于在横向运动中搜索图的所有顶点。它从一个给定的顶点开始,在进入下一个级别之前访问它的所有邻居。BFS的时间复杂度取决于图中顶点和边的数量。

文章中使用的动画网站地址:
限 pc: 广度优先算法 :http://www.donghuasuanfa.com/platform/portal?pc=bfs

算法一览表:https://blog.csdn.net/ww753951/article/details/106862328

动画算法一览表:http://www.donghuasuanfa.com/portal

算法过程

        算法分为五个步骤。
        步骤一:将源点放入到队列中。
        步骤二:将队列的头顶点u放入到已完成列表。
        步骤三:将u的所有未处理过的关联顶点放入到队列中,并标记为已处理。

        步骤四:将u顶点设置为完成顶点。
        步骤五:重复步骤二至四。

以下图为例,图的原点为7,则算法遍历图节点的顺序为7,13,25,16,18,39。

请添加图片描述

步骤一:初始化原点到队列

步骤演示过程如下图1-1所示。节点7为源点。算法首先将节点7移动到队列Q中。

请添加图片描述


图1-1

步骤二:将队列的头顶点放入到已完成集合

将队列的头元素u放入到已遍历完成列表。当前队列的头部顶点为7,所以将7顶点移动到已遍历集合。步骤演示过程如下图2-1所示。
请添加图片描述


图2-1

步骤三:将订单的关联顶点放入到队列中

将u的所有未处理过的关联顶点放入到队列中,并标记为已处理,节点颜色变为红色。
当前u的所有未处理的元素分别为13,25,16。所以将7的关联顶点分别放入队列。
步骤演示过程如下图3-1所示。

请添加图片描述


图3-1

步骤四:将u顶点设置为完成节点。

当前顶点为u=7。 将u=7顶点设置为已完成,并标记为绿色。步骤演示过程如下图3-1所示。
请添加图片描述


图4-1

步骤五:重复步骤二至四。

步骤二:将队列的头部顶点13放入到已遍历结合。
步骤三:将13节点的关联元素放入到到队列, 因为13的关联顶点分别为7和25,且7已处理、25已放入队列,所以13顶点的此步骤无需处理。
步骤四:将13节点设置为完成节点。
整体步骤如图5-1所示。

请添加图片描述


图5-1

        剩下的节点处理和上述步骤一致,不再赘述。

时间复杂度&空间复杂度

时间复杂度

邻接表为例:
        在BFS中,每个顶点和边只访问一次。因此,BFS的时间复杂度可以表示为O(V+E),其中V是图中顶点的数量,E是图中边的数量。

        让我们分解一下时间复杂性分析:
        1.访问所有顶点:BFS需要访问图中的所有顶点。这需要O(V)时间。
        2.检查所有边:BFS还需要检查所有边,以确定是否有任何未访问的顶点连接到当前顶点。对于每个顶点,我们需要检查其所有相邻顶点。在最坏的情况下,每个顶点与其他每个顶点都有一条边,即一个完整的图。这需要O(E)时间。

因此,BFS的总体时间复杂度为O(V+E)。

空间复杂度

        BFS的空间复杂度由队列数据结构决定,队列数据结构用于跟踪访问的顶点和要探索的顶点。在最坏的情况下,当访问所有顶点时,队列可以将所有顶点存储在图的一个级别上。因此,BFS的空间复杂度也是O(V)。

今天的文章广度优先搜索原理_深度优先算法时间复杂度分享到此就结束了,感谢您的阅读。

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。
如需转载请保留出处:https://bianchenghao.cn/86930.html

(0)
编程小号编程小号

相关推荐

发表回复

您的电子邮箱地址不会被公开。 必填项已用 * 标注