1、二次曲线公式
- 二次曲线的代数方程
a x 2 + b x y + c y 2 + d x + e y + f = 0 , a 、 b 、 c 、 d 、 e 、 f ∈ R ax^2+bxy+cy^2+dx+ey+f=0,a、b、c、d、e、f \in R ax2+bxy+cy2+dx+ey+f=0,a、b、c、d、e、f∈R
- 二次曲线的齐次方程
A x 2 + 2 B x y + C y 2 + 2 D x + 2 E y + F = 0 Ax^2+2Bxy+Cy^2+2Dx+2Ey+F=0 Ax2+2Bxy+Cy2+2Dx+2Ey+F=0
2、表达式
- 齐次方程的判别式:
Δ = B 2 − A C \Delta=B^2-AC Δ=B2−AC
- 代数方程的判别式:
Δ = b 2 − 4 a c \Delta=b^2-4ac\\ Δ=b2−4ac
- 其他表达式:
δ 1 = f Δ + ( a e 2 + c d 2 − b d e ) δ 2 = d 2 + e 2 − 4 ( a + c ) f σ 1 = a e 2 + c d 2 − b d e σ 2 = ( a + c ) 2 + Δ ) σ x = 2 c d − b e σ y = 2 a e − b d \delta_1=f\Delta+(ae^2+cd^2-bde)\\ \delta_2=d^2+e^2-4(a+c)f\\ \sigma_1=ae^2+cd^2-bde\\ \sigma_2=\sqrt{(a+c)^2+\Delta)}\\ \sigma_x=2cd-be\\ \sigma_y=2ae-bd δ1=fΔ+(ae2+cd2−bde)δ2=d2+e2−4(a+c)fσ1=ae2+cd2−bdeσ2=(a+c)2+Δ)σx=2cd−beσy=2ae−bd
3、二次曲线的几何分类
{ Δ < 0 , ( a + c ) δ 1 { > 0 , 实椭圆 ( a = c ≠ 0 , b = 0 时为实圆 ) = 0 , 两条相交的虚直线 < 0 , 虚椭圆 ( a = c ≠ 0 , b = 0 时为虚圆 ) Δ < 0 , δ 1 { > 0 , 双曲线 ( a + c = 0 时为等轴双曲线 ) = 0 , 两条相交的实直线 < 0 , 双曲线 ( a + c = 0 时为等轴的双曲线 ) Δ = 0 , ( a + c ) δ 1 { > 0 , 抛物线 = 0 , σ 2 { > 0 , 两条平行的实直线 = 0 , 两条重合的实直线 < 0 , 两条平行的虚直线 < 0 , 不存在 \begin{cases} \Delta<0,(a+c)\delta_1 \begin{cases} >0,实椭圆(a=c\neq0,b=0时为实圆)\\ =0,两条相交的虚直线\\ <0,虚椭圆(a=c\neq0,b=0时为虚圆) \end{cases}\\\\ \Delta<0,\delta_1 \begin{cases} >0,双曲线(a+c=0时为等轴双曲线)\\ =0,两条相交的实直线\\ <0,双曲线(a+c=0时为等轴的双曲线) \end{cases}\\\\ \Delta=0,(a+c)\delta_1 \begin{cases} >0,抛物线\\ =0,\sigma_2 \begin{cases} >0,两条平行的实直线\\ =0,两条重合的实直线\\ <0,两条平行的虚直线 \end{cases}\\ <0,不存在 \end{cases} \end{cases} ⎩
⎨
⎧Δ<0,(a+c)δ1⎩
⎨
⎧>0,实椭圆(a=c=0,b=0时为实圆)=0,两条相交的虚直线<0,虚椭圆(a=c=0,b=0时为虚圆)Δ<0,δ1⎩
⎨
⎧>0,双曲线(a+c=0时为等轴双曲线)=0,两条相交的实直线<0,双曲线(a+c=0时为等轴的双曲线)Δ=0,(a+c)δ1⎩
⎨
⎧>0,抛物线=0,σ2⎩
⎨
⎧>0,两条平行的实直线=0,两条重合的实直线<0,两条平行的虚直线<0,不存在
4、圆参数计算
-
判别条件: Δ < 0 , ( a + c ) δ 1 > 0 , a = c ≠ 0 , b = 0 时为实圆 \Delta<0,(a+c)\delta_1>0,a=c\neq0,b=0时为实圆 Δ<0,(a+c)δ1>0,a=c=0,b=0时为实圆
-
圆心坐标: x 0 = σ x Δ , y 0 = σ y Δ x_0=\frac{\sigma_x}{\Delta},y_0=\frac{\sigma_y}{\Delta} x0=Δσx,y0=Δσy
-
水平方向两端点坐标:
{ x 1 , 2 = x 0 ± b ∣ δ 1 Δ ⋅ [ δ 2 − ( a + c ) ] ⋅ σ 2 ⋅ [ σ 2 + ( a − c ) ] ∣ y 1 , 2 = y 0 ± ∣ δ 1 ⋅ [ σ 2 + ( a − c ) ] Δ ⋅ [ σ 2 − ( a + c ) ] ⋅ σ 2 ∣ \begin{cases} x_{1,2}=x_0\pm b\sqrt{|\frac{\delta_1}{\Delta\cdot[\delta_2-(a+c)]\cdot\sigma_2\cdot[\sigma_2+(a-c)]}|}\\ y_{1,2}=y_0\pm\sqrt{|\frac{\delta_1\cdot[\sigma_2+(a-c)]}{\Delta\cdot[\sigma_2-(a+c)]\cdot\sigma_2}|} \end{cases}\\ ⎩
⎨
⎧x1,2=x0±b∣Δ⋅[δ2−(a+c)]⋅σ2⋅[σ2+(a−c)]δ1∣y1,2=y0±∣Δ⋅[σ2−(a+c)]⋅σ2δ1⋅[σ2+(a−c)]∣
5、椭圆参数计算
-
判别条件: Δ < 0 , ( a + c ) δ 1 > 0 时为椭圆,且 a = c ≠ 0 , b = 0 时为实圆 \Delta<0,(a+c)\delta_1>0时为椭圆,且a=c\neq0,b=0时为实圆 Δ<0,(a+c)δ1>0时为椭圆,且a=c=0,b=0时为实圆
-
圆心: x 0 = σ x Δ , y 0 = σ y Δ x_0=\frac{\sigma_x}{\Delta},y_0=\frac{\sigma_y}{\Delta} x0=Δσx,y0=Δσy
-
长端两端点坐标:
-
δ 1 > 0 时 : \delta_1>0时: δ1>0时:
长轴 { x 1 , 2 = x 0 ± b ∣ δ 1 Δ ⋅ [ δ 2 − ( a + c ) ] ⋅ σ 2 ⋅ [ σ 2 + ( a − c ) ] ∣ y 1 , 2 = y 0 ± ∣ δ 1 ⋅ [ σ 2 + ( a − c ) ] Δ ⋅ [ σ 2 − ( a + c ) ] ⋅ σ 2 ∣ 长轴\begin{cases} x_{1,2}=x_0\pm b\sqrt{|\frac{\delta_1}{\Delta\cdot[\delta_2-(a+c)]\cdot\sigma_2\cdot[\sigma_2+(a-c)]}|}\\ y_{1,2}=y_0\pm\sqrt{|\frac{\delta_1\cdot[\sigma_2+(a-c)]}{\Delta\cdot[\sigma_2-(a+c)]\cdot\sigma_2}|} \end{cases}\\ 长轴⎩
⎨
⎧x1,2=x0±b∣Δ⋅[δ2−(a+c)]⋅σ2⋅[σ2+(a−c)]δ1∣y1,2=y0±∣Δ⋅[σ2−(a+c)]⋅σ2δ1⋅[σ2+(a−c)]∣ -
δ 1 < 0 时 : \delta_1<0时: δ1<0时:
长轴 { x 1 , 2 = x 0 ± ∣ δ 1 ⋅ [ σ 2 + ( a − c ) ] Δ ⋅ [ σ 2 + ( a + c ) ] ⋅ σ 2 ∣ y 1 , 2 = y 0 ± b ∣ δ 1 Δ ⋅ [ δ 2 + ( a + c ) ] ⋅ σ 2 ⋅ [ σ 2 + ( a − c ) ] ∣ 长轴\begin{cases} x_{1,2}=x_0\pm\sqrt{|\frac{\delta_1\cdot[\sigma_2+(a-c)]}{\Delta\cdot[\sigma_2+(a+c)]\cdot\sigma_2}|}\\ y_{1,2}=y_0\pm b\sqrt{|\frac{\delta_1}{\Delta\cdot[\delta_2+(a+c)]\cdot\sigma_2\cdot[\sigma_2+(a-c)]}|} \end{cases} 长轴⎩
⎨
⎧x1,2=x0±∣Δ⋅[σ2+(a+c)]⋅σ2δ1⋅[σ2+(a−c)]∣y1,2=y0±b∣Δ⋅[δ2+(a+c)]⋅σ2⋅[σ2+(a−c)]δ1∣
-
-
短半轴端点坐标:
-
δ 1 > 0 时 : \delta_1>0时: δ1>0时:
短轴 { x 3 , 4 = x 0 ± ∣ δ 1 ⋅ [ σ 2 + ( a − c ) ] Δ ⋅ [ σ 2 + ( a + c ) ] ⋅ σ 2 ∣ y 3 , 4 = y 0 ± b ∣ δ 1 Δ ⋅ [ δ 2 + ( a + c ) ] ⋅ σ 2 ⋅ [ σ 2 + ( a − c ) ] ∣ 短轴\begin{cases} x_{3,4}=x_0\pm\sqrt{|\frac{\delta_1\cdot[\sigma_2+(a-c)]}{\Delta\cdot[\sigma_2+(a+c)]\cdot\sigma_2}|}\\ y_{3,4}=y_0\pm b\sqrt{|\frac{\delta_1}{\Delta\cdot[\delta_2+(a+c)]\cdot\sigma_2\cdot[\sigma_2+(a-c)]}|} \end{cases} 短轴⎩
⎨
⎧x3,4=x0±∣Δ⋅[σ2+(a+c)]⋅σ2δ1⋅[σ2+(a−c)]∣y3,4=y0±b∣Δ⋅[δ2+(a+c)]⋅σ2⋅[σ2+(a−c)]δ1∣ -
δ 1 < 0 时 : \delta_1<0时: δ1<0时:
短轴 { x 3 , 4 = x 0 ± b ∣ δ 1 Δ ⋅ [ δ 2 − ( a + c ) ] ⋅ σ 2 ⋅ [ σ 2 + ( a − c ) ] ∣ y 3 , 4 = y 0 ± ∣ δ 1 ⋅ [ σ 2 + ( a − c ) ] Δ ⋅ [ σ 2 − ( a + c ) ] ⋅ σ 2 ∣ 短轴\begin{cases} x_{3,4}=x_0\pm b\sqrt{|\frac{\delta_1}{\Delta\cdot[\delta_2-(a+c)]\cdot\sigma_2\cdot[\sigma_2+(a-c)]}|}\\ y_{3,4}=y_0\pm\sqrt{|\frac{\delta_1\cdot[\sigma_2+(a-c)]}{\Delta\cdot[\sigma_2-(a+c)]\cdot\sigma_2}|} \end{cases}\\ 短轴⎩
⎨
⎧x3,4=x0±b∣Δ⋅[δ2−(a+c)]⋅σ2⋅[σ2+(a−c)]δ1∣y3,4=y0±∣Δ⋅[σ2−(a+c)]⋅σ2δ1⋅[σ2+(a−c)]∣
-
6、双曲线参数计算
-
平面双曲线方程
-
标准双曲线方程:
x 2 a 2 − y 2 b 2 = 1 ( a > 0 , b > 0 ) \frac{x^2}{a^2}-\frac{y^2}{b^2}=1 (a>0,b>0) a2x2−b2y2=1(a>0,b>0)
a a a为双曲线实轴的一半, b b b为双曲线虚轴的一半, c c c为焦距的一半。 -
标准双曲线参数方程:
x 2 a 2 − y 2 b 2 = 1 ( a > 0 , b > 0 ) \frac{x^2}{a^2}-\frac{y^2}{b^2}=1 (a>0,b>0) a2x2−b2y2=1(a>0,b>0)的参数方程为:
{ x = a s e c t y = b t a n t , t ∈ [ 0 , 2 π ) , t ≠ π 2 , t ≠ 3 π 2 \begin{cases} x=asect\\ y=btant \end{cases},t\in[0,2\pi),t\neq\frac{\pi}{2},t\neq\frac{3\pi}{2} {
x=asecty=btant,t∈[0,2π),t=2π,t=23π -
含旋转和平移的双曲线参数方程
将标准双曲线 x 2 a 2 − y 2 b 2 = 1 ( a > 0 , b > 0 ) \frac{x^2}{a^2}-\frac{y^2}{b^2}=1 (a>0,b>0) a2x2−b2y2=1(a>0,b>0)的参数方程进行平移 ( x 0 , y 0 ) (x_0,y_0) (x0,y0),旋转 θ \theta θ后
{ x = ( a s e c t + x 0 ) ∗ c o s θ + ( b t a n t + y 0 ) ∗ s i n θ y = − ( a s e c t + x 0 ) ∗ s i n θ + ( b t a n t + y 0 ) ∗ c o s θ \begin{cases} x=(asect+x_0)*cos\theta+(btant+y_0)*sin\theta\\ y=-(asect+x_0)*sin\theta+(btant+y_0)*cos\theta\\ \end{cases} {
x=(asect+x0)∗cosθ+(btant+y0)∗sinθy=−(asect+x0)∗sinθ+(btant+y0)∗cosθ
-
-
二次曲线形式的平面双曲线方程
- 判别条件: Δ < 0 , δ 1 ≠ 0 \Delta<0,\delta_1\neq 0 Δ<0,δ1=0时,为双曲线,且a+c=0时为等轴双曲线
-
长端两端点坐标:
-
δ 1 > 0 时 : \delta_1>0时: δ1>0时:
长轴 { x 1 , 2 = x 0 ± b ∣ δ 1 Δ ⋅ [ δ 2 − ( a + c ) ] ⋅ σ 2 ⋅ [ σ 2 + ( a − c ) ] ∣ y 1 , 2 = y 0 ± ∣ δ 1 ⋅ [ σ 2 + ( a − c ) ] Δ ⋅ [ σ 2 − ( a + c ) ] ⋅ σ 2 ∣ 长轴\begin{cases} x_{1,2}=x_0\pm b\sqrt{|\frac{\delta_1}{\Delta\cdot[\delta_2-(a+c)]\cdot\sigma_2\cdot[\sigma_2+(a-c)]}|}\\ y_{1,2}=y_0\pm\sqrt{|\frac{\delta_1\cdot[\sigma_2+(a-c)]}{\Delta\cdot[\sigma_2-(a+c)]\cdot\sigma_2}|} \end{cases}\\ 长轴⎩
⎨
⎧x1,2=x0±b∣Δ⋅[δ2−(a+c)]⋅σ2⋅[σ2+(a−c)]δ1∣y1,2=y0±∣Δ⋅[σ2−(a+c)]⋅σ2δ1⋅[σ2+(a−c)]∣ -
δ 1 < 0 时 : \delta_1<0时: δ1<0时:
长轴 { x 1 , 2 = x 0 ± ∣ δ 1 ⋅ [ σ 2 + ( a − c ) ] Δ ⋅ [ σ 2 + ( a + c ) ] ⋅ σ 2 ∣ y 1 , 2 = y 0 ± b ∣ δ 1 Δ ⋅ [ δ 2 + ( a + c ) ] ⋅ σ 2 ⋅ [ σ 2 + ( a − c ) ] ∣ 长轴\begin{cases} x_{1,2}=x_0\pm\sqrt{|\frac{\delta_1\cdot[\sigma_2+(a-c)]}{\Delta\cdot[\sigma_2+(a+c)]\cdot\sigma_2}|}\\ y_{1,2}=y_0\pm b\sqrt{|\frac{\delta_1}{\Delta\cdot[\delta_2+(a+c)]\cdot\sigma_2\cdot[\sigma_2+(a-c)]}|} \end{cases} 长轴⎩
⎨
⎧x1,2=x0±∣Δ⋅[σ2+(a+c)]⋅σ2δ1⋅[σ2+(a−c)]∣y1,2=y0±b∣Δ⋅[δ2+(a+c)]⋅σ2⋅[σ2+(a−c)]δ1∣
-
-
短半轴端点坐标:
-
δ 1 > 0 时 : \delta_1>0时: δ1>0时:
短轴 { x 3 , 4 = x 0 ± ∣ δ 1 ⋅ [ σ 2 + ( a − c ) ] Δ ⋅ [ σ 2 + ( a + c ) ] ⋅ σ 2 ∣ y 3 , 4 = y 0 ± b ∣ δ 1 Δ ⋅ [ δ 2 + ( a + c ) ] ⋅ σ 2 ⋅ [ σ 2 + ( a − c ) ] ∣ 短轴\begin{cases} x_{3,4}=x_0\pm\sqrt{|\frac{\delta_1\cdot[\sigma_2+(a-c)]}{\Delta\cdot[\sigma_2+(a+c)]\cdot\sigma_2}|}\\ y_{3,4}=y_0\pm b\sqrt{|\frac{\delta_1}{\Delta\cdot[\delta_2+(a+c)]\cdot\sigma_2\cdot[\sigma_2+(a-c)]}|} \end{cases} 短轴⎩
⎨
⎧x3,4=x0±∣Δ⋅[σ2+(a+c)]⋅σ2δ1⋅[σ2+(a−c)]∣y3,4=y0±b∣Δ⋅[δ2+(a+c)]⋅σ2⋅[σ2+(a−c)]δ1∣ -
δ 1 < 0 时 : \delta_1<0时: δ1<0时:
短轴 { x 3 , 4 = x 0 ± b ∣ δ 1 Δ ⋅ [ δ 2 − ( a + c ) ] ⋅ σ 2 ⋅ [ σ 2 + ( a − c ) ] ∣ y 3 , 4 = y 0 ± ∣ δ 1 ⋅ [ σ 2 + ( a − c ) ] Δ ⋅ [ σ 2 − ( a + c ) ] ⋅ σ 2 ∣ 短轴\begin{cases} x_{3,4}=x_0\pm b\sqrt{|\frac{\delta_1}{\Delta\cdot[\delta_2-(a+c)]\cdot\sigma_2\cdot[\sigma_2+(a-c)]}|}\\ y_{3,4}=y_0\pm\sqrt{|\frac{\delta_1\cdot[\sigma_2+(a-c)]}{\Delta\cdot[\sigma_2-(a+c)]\cdot\sigma_2}|} \end{cases}\\ 短轴⎩
⎨
⎧x3,4=x0±b∣Δ⋅[δ2−(a+c)]⋅σ2⋅[σ2+(a−c)]δ1∣y3,4=y0±∣Δ⋅[σ2−(a+c)]⋅σ2δ1⋅[σ2+(a−c)]∣
-
7、抛物线参数计算
-
平面抛物线的参数方程:
x = ( 2 p t 2 + x 0 ) ∗ c o s θ + ( 2 p t + y 0 ) ∗ s i n θ y = − ( 2 p t 2 + x 0 ) ∗ s i n θ + ( 2 p t + y 0 ) ∗ c o s θ x=(2pt^2+x_0)*cos\theta+(2pt+y_0)*sin\theta\\ y=-(2pt^2+x_0)*sin\theta+(2pt+y_0)*cos\theta\\ x=(2pt2+x0)∗cosθ+(2pt+y0)∗sinθy=−(2pt2+x0)∗sinθ+(2pt+y0)∗cosθ
其中, p p p为焦点掉准线的距离,即焦准距; θ \theta θ为抛物线的旋转角,即准线与x轴的旋转角。 -
判别条件: D e l t a = 0 , ( a + c ) δ 1 > 0 Delta=0,(a+c)\delta_1>0 Delta=0,(a+c)δ1>0
-
顶点坐标:
{ x 1 = 1 2 ( a + c ) [ σ x 4 ( δ 2 σ 1 + 1 a + c ) − d ] y 1 = 1 2 ( a + c ) [ σ y 4 ( δ 2 σ 1 + 1 a + c ) − e ] \begin{cases} x_1 = \frac{1}{2(a+c)}[\frac{\sigma_x}{4}(\frac{\delta_2}{\sigma_1}+\frac{1}{a+c})-d]\\ y_1 = \frac{1}{2(a+c)}[\frac{\sigma_y}{4}(\frac{\delta_2}{\sigma_1}+\frac{1}{a+c})-e] \end{cases} {
x1=2(a+c)1[4σx(σ1δ2+a+c1)−d]y1=2(a+c)1[4σy(σ1δ2+a+c1)−e]
- 焦点坐标:
{ x 5 = x 1 − σ x 8 ( a + c ) 2 = 1 2 ( a + c ) ( σ x ⋅ δ 2 4 ⋅ σ 1 − d ) y 5 = y 1 − σ y 8 ( a + c ) 2 = 1 2 ( a + c ) ( σ y ⋅ δ 2 4 ⋅ σ 1 − e ) \begin{cases} x_5=x_1-\frac{\sigma_x}{8(a+c)^2}=\frac{1}{2(a+c)}(\frac{\sigma_x\cdot\delta_2}{4\cdot\sigma_1}-d)\\ y_5=y_1-\frac{\sigma_y}{8(a+c)^2}=\frac{1}{2(a+c)}(\frac{\sigma_y\cdot\delta_2}{4\cdot\sigma_1}-e)\\ \end{cases} {
x5=x1−8(a+c)2σx=2(a+c)1(4⋅σ1σx⋅δ2−d)y5=y1−8(a+c)2σy=2(a+c)1(4⋅σ1σy⋅δ2−e)
- 准线方程:
σ x ⋅ [ x − ( x 1 + σ x 8 ( a + c ) 2 ) ] + σ x ⋅ [ y − ( y 1 + σ y 8 ( a + c ) 2 ) ] = 0 \sigma_x\cdot[x-(x_1+\frac{\sigma_x}{8(a+c)^2})]+\sigma_x\cdot[y-(y_1+\frac{\sigma_y}{8(a+c)^2})]=0 σx⋅[x−(x1+8(a+c)2σx)]+σx⋅[y−(y1+8(a+c)2σy)]=0 - 焦准距:
p = 1 2 ∣ a + c ∣ ⋅ σ 1 a + c p=\frac{1}{2|a+c|}\cdot\sqrt{\frac{\sigma_1}{a+c}} p=2∣a+c∣1⋅a+cσ1
今天的文章圆锥曲线椭圆双曲线抛物线的定义和几何性质_双曲线的所有公式[通俗易懂]分享到此就结束了,感谢您的阅读。
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。
如需转载请保留出处:https://bianchenghao.cn/88891.html