03:12\\\\\\\\r\\\\\\\\n双向击穿二极管
- 可控硅调压器外接控制端口
- 使用光耦控制双向可控硅
01 稳压二极管
一、前言
这是一个双向可控硅调压模块。 大部分器件已经被拆卸下来, 上面的这颗双向击穿二极管, 是用于触发双向可控硅的器件。 它上面的文字不太清楚, 也不知道具体的型号。 下面准备对于它的双向击穿特性进行初步测试。 了解一下它的端口电压特性。
二、特性测量
首先, 将这个双向击穿二极管拆卸下来。 将其放置在面包板上进行测量。 通过一个 2k欧姆的电阻连接到稳压电源。 使用稳压电源提供 32V的直流电压。 测量稳压二极管两端的电压, 大约为 21V。 调换双向二极管的方向, 重新进行测量。 此时, 稳压电压为 20V。
▲ 图1.2.1 稳压二极管两端电压
这里观察到的正反两个方面的稳压数值, 是二极管在击穿之后的稳态下对应的电压。 下面测量一下, 随着施加的电压增加, 击穿二极管的稳压特性。 对比一下与普通的稳压管是否有区别。 这是测量的结果。 可以看到它具有一个明显的击穿特征。 二极管被击穿之后, 它的两端电压迅速降低到20V左右。 这一点与普通的稳压二极管是不一样的。
▲ 图1.2.2 输入电压与稳压二极管两端电压
#!/usr/local/bin/python # -*- coding: gbk -*- #============================================================ # TEST1.PY -- by Dr. ZhuoQing 2024-05-29 # # Note: #============================================================ from headm import * from tsmodule.tsvisa import * from tsmodule.tsstm32 import * vdim = linspace(0, 64, 100) vvv = [] for v in vdim: dh1766volt1(v) time.sleep(2) meter = meterval() vvv.append(meter[0]) tspsave("measure", vdim=vdim,vvv=vvv) printff(v, meter) plt.plot(vdim, vvv, lw=3) plt.xlabel("Input(V)") plt.ylabel("Output(V)") plt.grid(True) plt.tight_layout() plt.show() #------------------------------------------------------------ # END OF FILE : TEST1.PY #============================================================
vdim=[0.0000,0.6465,1.2929,1.9394,2.5859,3.2323,3.8788,4.5253,5.1717,5.8182,6.4646,7.1111,7.7576,8.4040,9.0505,9.6970,10.3434,10.9899,11.6364,12.2828,12.9293,13.5758,14.2222,14.8687,15.5152,16.1616,16.8081,17.4545,18.1010,18.7475,19.3939,20.0404,20.6869,21.3333,21.9798,22.6263,23.2727,23.9192,24.5657,25.2121,25.8586,26.5051,27.1515,27.7980,28.4444,29.0909,29.7374,30.3838,31.0303,31.6768,32.3232,32.9697,33.6162,34.2626,34.9091,35.5556,36.2020,36.8485,37.4949,38.1414,38.7879,39.4343,40.0808,40.7273,41.3737,42.0202,42.6667,43.3131,43.9596,44.6061,45.2525,45.8990,46.5455,47.1919,47.8384,48.4848,49.1313,49.7778,50.4242,51.0707,51.7172,52.3636,53.0101,53.6566,54.3030,54.9495,55.5960,56.2424,56.8889,57.5354,58.1818,58.8283,59.4747,60.1212,60.7677,61.4141,62.0606,62.7071,63.3535,64.0000] vvv=[0.0018,0.6449,1.2922,1.9383,2.5846,3.2308,3.8778,4.5232,5.1694,5.8166,6.4629,7.1092,7.7552,8.4014,9.0478,9.6938,10.3430,10.9880,11.6330,12.2810,12.9270,13.5730,14.2190,14.8660,15.5110,16.1580,16.8050,17.4510,18.0970,18.7440,19.3900,20.0360,20.6820,21.3300,21.9760,22.6220,23.2670,23.9140,24.5610,25.2070,25.8540,26.5000,27.1460,27.7930,28.4390,29.0850,29.7320,30.3780,31.0240,31.6710,21.0740,20.9110,20.7750,20.6570,20.5470,20.4490,20.3570,20.2710,20.1920,20.1160,20.0450,19.9780,19.9140,19.8530,19.7950,19.7400,19.6860,19.6370,19.5890,19.5430,19.5000,19.4560,19.4160,19.3770,19.3400,19.3060,19.2700,19.2360,19.2040,19.1730,19.1440,19.1160,19.0880,19.0630,19.0370,19.0120,18.9880,18.9640,18.9400,18.9210,18.9010,18.8810,18.8630,18.8480,18.8310,18.8150,18.7990,18.7830,18.7650,18.7490]
将稳压二极管反过来, 重新测量。 可以看到正反两个方向, 二极管被击穿的电压是相同的。 击穿后, 一个方向对应的电压比起另外一个稍微高一些。 在之后,随着电流的增加, 电压缓慢下降。 至于为何另外一个电压出现了波动, 原因不明。 不知道谁能够对此进行解释。
▲ 图1.2.3 反向击穿过程
vdim=[0.0000,0.6465,1.2929,1.9394,2.5859,3.2323,3.8788,4.5253,5.1717,5.8182,6.4646,7.1111,7.7576,8.4040,9.0505,9.6970,10.3434,10.9899,11.6364,12.2828,12.9293,13.5758,14.2222,14.8687,15.5152,16.1616,16.8081,17.4545,18.1010,18.7475,19.3939,20.0404,20.6869,21.3333,21.9798,22.6263,23.2727,23.9192,24.5657,25.2121,25.8586,26.5051,27.1515,27.7980,28.4444,29.0909,29.7374,30.3838,31.0303,31.6768,32.3232,32.9697,33.6162,34.2626,34.9091,35.5556,36.2020,36.8485,37.4949,38.1414,38.7879,39.4343,40.0808,40.7273,41.3737,42.0202,42.6667,43.3131,43.9596,44.6061,45.2525,45.8990,46.5455,47.1919,47.8384,48.4848,49.1313,49.7778,50.4242,51.0707,51.7172,52.3636,53.0101,53.6566,54.3030,54.9495,55.5960,56.2424,56.8889,57.5354,58.1818,58.8283,59.4747,60.1212,60.7677,61.4141,62.0606,62.7071,63.3535,64.0000] vvv=[0.0041,0.6450,1.2922,1.9383,2.5845,3.2309,3.8779,4.5232,5.1694,5.8166,6.4629,7.1092,7.7553,8.4014,9.0478,9.6938,10.3430,10.9880,11.6330,12.2800,12.9270,13.5730,14.2190,14.8650,15.5110,16.1570,16.8050,17.4510,18.0970,18.7440,19.3900,20.0360,20.6820,21.3290,21.9760,22.6210,23.2680,23.9140,24.5610,25.2070,25.8540,26.5000,27.1460,27.7930,28.4390,29.0850,29.7320,30.3770,31.0240,31.6700,20.0480,19.9260,19.8330,19.7600,19.7780,19.6780,19.6020,19.5550,19.6430,19.4560,19.3840,19.4140,19.4380,19.6720,19.2280,19.2940,19.2940,19.3550,19.2230,19.0800,18.9410,18.9170,19.0520,18.8810,19.0300,19.0600,18.8210,18.8460,18.6680,18.6950,19.0810,18.9440,18.8570,18.7970,18.7690,18.7950,18.6210,18.6950,18.8770,18.7350,18.6720,18.6630,18.6110,18.5180,18.5260,18.3590,18.3430,18.3400,18.3460,18.3730]
三、振荡器
由于双向击穿二极管具有明显的击穿特性。 在二极管两端并联一个电容, 由此可以形成张弛振荡器。 当电容两端的电压被电阻充电, 超过击穿电压之后, 变回迅速通过击穿二极管进行放电。 放电电压小于一定值之后, 二极管变恢复截止。 这样便形成了简写震荡。 这一点是它能够适合用于可控硅触发的特点。
※ 总 结 ※
本文测试了用于双向可控硅电路中的触发击穿二极管的特性。 它可以在 31V左右被击穿, 击穿后两端电压迅速降低。 利用这种特性, 可以形成间歇振荡电路。 也正是这个特性, 使得它适合于双向可控硅的触发。
■ 相关文献链接:
- 可控硅调压器外接控制端口-CSDN博客
- 使用光耦控制双向可控硅-CSDN博客
● 相关图表链接:
今天的文章 双向击穿二极管分享到此就结束了,感谢您的阅读。
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。
如需转载请保留出处:https://bianchenghao.cn/bian-cheng-ji-chu/100279.html